Solve the given problem that involves integration

Click For Summary
SUMMARY

The forum discussion focuses on solving an integral using partial fractions and substitution techniques. The integral in question is $$\int {\frac{7e^x-8}{(e^x-2)^2}}dx$$. The user successfully applies the substitution $$u=e^x-2$$ and derives the integral into a more manageable form. The final result after evaluating the integral is $$\left[\ln \dfrac{16}{9}+\dfrac{3}{4}\right]$$, confirming the effectiveness of the chosen method.

PREREQUISITES
  • Understanding of integration techniques, specifically partial fractions
  • Familiarity with substitution methods in calculus
  • Knowledge of exponential functions and their properties
  • Ability to manipulate logarithmic expressions
NEXT STEPS
  • Study advanced integration techniques, including integration by parts
  • Learn about improper integrals and their evaluation
  • Explore the application of Laplace transforms in solving differential equations
  • Investigate the use of numerical methods for integral approximation
USEFUL FOR

Students, educators, and professionals in mathematics or engineering fields who are looking to deepen their understanding of integration techniques and their applications in solving complex problems.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
See attached.
Relevant Equations
Integration
1686714379220.png


For part (a),

Using partial fractions (repeated factor), i have...

##7e^x -8 = A(e^x-2)+B##

##A=7##

##-2A+B=-8, ⇒B=6##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]dx$$

##u=e^x-2##
##du=e^x dx##
##dx=\dfrac{du}{e^x}##

...
also

##u=e^x-2##

##e^x=u+2##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]=\int \left[{\frac{7u+6}{(e^x-2)^2}}\dfrac{du}{e^x}\right]=\int \left[{\frac{7u+6}{u^2(u+2)}}du\right]$$

...part b later...taking a break.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: See attached.
Relevant Equations: Integration

View attachment 327853

For part (a),

Using partial fractions (repeated factor), i have...
Partial fractions is one way to evaluate the integral, but that's not what the problem is asking you to do. The four lines below are not relevant to the problem.
chwala said:
##7e^x -8 = A(e^x-2)+B##
##A=7##
##-2A+B=-8, ⇒B=6##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]dx$$

##u=e^x-2##
##du=e^x dx##
##dx=\dfrac{du}{e^x}##
...
also
Not "also" -- below is what the problem is asking you to do.

In addition to the substitutions above, you should include these:
##e^x = u + 2##
and ##dx = \frac{du}{e^x} = \frac {du}{u + 2}##
chwala said:
##u=e^x-2##
##e^x=u+2##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]=\int \left[{\frac{7u+6}{(e^x-2)^2}}\dfrac{du}{e^x}\right]=\int \left[{\frac{7u+6}{u^2(u+2)}}du\right]$$

...part b later...taking a break.
With the substitutions I added, you can replace everything involving ##e^x## and ##dx## in the starting integral with their equivalents in terms of u and du, in one step.
 
  • Like
Likes   Reactions: chwala
Mark44 said:
Partial fractions is one way to evaluate the integral, but that's not what the problem is asking you to do. The four lines below are not relevant to the problem.

Not "also" -- below is what the problem is asking you to do.

In addition to the substitutions above, you should include these:
##e^x = u + 2##
and ##dx = \frac{du}{e^x} = \frac {du}{u + 2}##

With the substitutions I added, you can replace everything involving ##e^x## and ##dx## in the starting integral with their equivalents in terms of u and du, in one step.
I will check this out. Thanks.
 
Mark44 said:
Partial fractions is one way to evaluate the integral, but that's not what the problem is asking you to do. The four lines below are not relevant to the problem.

Not "also" -- below is what the problem is asking you to do.

In addition to the substitutions above, you should include these:
##e^x = u + 2##
and ##dx = \frac{du}{e^x} = \frac {du}{u + 2}##

With the substitutions I added, you can replace everything involving ##e^x## and ##dx## in the starting integral with their equivalents in terms of u and du, in one step.
True, the first part did not require partial fractions...it was straightforward...need to stop overthinking :cool: ...cheers @Mark44

...but part (b) will require thato0)...working on it.
 
for part (b) i have,

$$\int \dfrac{7u+6}{u^2(u+2)} du = \int\left[\dfrac{-2}{u+2}+ \dfrac{2}{u}+\dfrac{3}{u^2}\right]du$$

...

$$=\left[-2\ln (u+2) + 2 \ln u-\dfrac{3}{u}\right]$$

$$=\left[-2\ln e^x + 2 \ln (e^x-2)-\dfrac{3}{e^x-2}\right]$$

on applying the limits i end up with,

$$=\left[2\ln 4-2\ln 6-\dfrac{3}{4}\right] -\left[2\ln 2-2\ln 4-\dfrac{3}{2}\right]$$

$$=\left[\ln \dfrac{4}{9}-\ln \dfrac{1}{4}-\dfrac{3}{4}+\dfrac{3}{2}\right]$$

$$=\left[\ln \dfrac{16}{9}+\dfrac{3}{4}\right]$$

Bingo!

insight welcome guys!!
 
Last edited:

Similar threads

Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K