Solve the given problem that involves integration

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached.
Relevant Equations
Integration
1686714379220.png


For part (a),

Using partial fractions (repeated factor), i have...

##7e^x -8 = A(e^x-2)+B##

##A=7##

##-2A+B=-8, ⇒B=6##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]dx$$

##u=e^x-2##
##du=e^x dx##
##dx=\dfrac{du}{e^x}##

...
also

##u=e^x-2##

##e^x=u+2##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]=\int \left[{\frac{7u+6}{(e^x-2)^2}}\dfrac{du}{e^x}\right]=\int \left[{\frac{7u+6}{u^2(u+2)}}du\right]$$

...part b later...taking a break.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: See attached.
Relevant Equations: Integration

View attachment 327853

For part (a),

Using partial fractions (repeated factor), i have...
Partial fractions is one way to evaluate the integral, but that's not what the problem is asking you to do. The four lines below are not relevant to the problem.
chwala said:
##7e^x -8 = A(e^x-2)+B##
##A=7##
##-2A+B=-8, ⇒B=6##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]dx$$

##u=e^x-2##
##du=e^x dx##
##dx=\dfrac{du}{e^x}##
...
also
Not "also" -- below is what the problem is asking you to do.

In addition to the substitutions above, you should include these:
##e^x = u + 2##
and ##dx = \frac{du}{e^x} = \frac {du}{u + 2}##
chwala said:
##u=e^x-2##
##e^x=u+2##

$$\int {\frac{7e^x-8}{(e^x-2)^2}}dx=\int \left[{\frac{7}{e^x-2}}+{\frac{6}{(e^x-2)^2}}\right]=\int \left[{\frac{7u+6}{(e^x-2)^2}}\dfrac{du}{e^x}\right]=\int \left[{\frac{7u+6}{u^2(u+2)}}du\right]$$

...part b later...taking a break.
With the substitutions I added, you can replace everything involving ##e^x## and ##dx## in the starting integral with their equivalents in terms of u and du, in one step.
 
Mark44 said:
Partial fractions is one way to evaluate the integral, but that's not what the problem is asking you to do. The four lines below are not relevant to the problem.

Not "also" -- below is what the problem is asking you to do.

In addition to the substitutions above, you should include these:
##e^x = u + 2##
and ##dx = \frac{du}{e^x} = \frac {du}{u + 2}##

With the substitutions I added, you can replace everything involving ##e^x## and ##dx## in the starting integral with their equivalents in terms of u and du, in one step.
I will check this out. Thanks.
 
Mark44 said:
Partial fractions is one way to evaluate the integral, but that's not what the problem is asking you to do. The four lines below are not relevant to the problem.

Not "also" -- below is what the problem is asking you to do.

In addition to the substitutions above, you should include these:
##e^x = u + 2##
and ##dx = \frac{du}{e^x} = \frac {du}{u + 2}##

With the substitutions I added, you can replace everything involving ##e^x## and ##dx## in the starting integral with their equivalents in terms of u and du, in one step.
True, the first part did not require partial fractions...it was straightforward...need to stop overthinking :cool: ...cheers @Mark44

...but part (b) will require thato0)...working on it.
 
for part (b) i have,

$$\int \dfrac{7u+6}{u^2(u+2)} du = \int\left[\dfrac{-2}{u+2}+ \dfrac{2}{u}+\dfrac{3}{u^2}\right]du$$

...

$$=\left[-2\ln (u+2) + 2 \ln u-\dfrac{3}{u}\right]$$

$$=\left[-2\ln e^x + 2 \ln (e^x-2)-\dfrac{3}{e^x-2}\right]$$

on applying the limits i end up with,

$$=\left[2\ln 4-2\ln 6-\dfrac{3}{4}\right] -\left[2\ln 2-2\ln 4-\dfrac{3}{2}\right]$$

$$=\left[\ln \dfrac{4}{9}-\ln \dfrac{1}{4}-\dfrac{3}{4}+\dfrac{3}{2}\right]$$

$$=\left[\ln \dfrac{16}{9}+\dfrac{3}{4}\right]$$

Bingo!

insight welcome guys!!
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top