- #1
izen
- 51
- 0
Homework Statement
Solve the integral of differential equation
∫[itex]^{t}_{0}[/itex] y([itex]\tau[/itex]) d[itex]\tau[/itex] -[itex]\acute{y}[/itex] (t) = t
for t≥0 with y(0)=4
The Attempt at a Solution
take laplace both sides
[itex]\frac{Y}{s}[/itex] - sY + 4 = [itex]\frac{1}{s^{2}}[/itex]
Y [itex]\frac{1 - s^{2}}{s}[/itex] =[itex]\frac{1}{s^{2}}[/itex] - 4
Y [itex]\frac{s^{2}-1}{s}[/itex] =- [itex]\frac{1}{s^{2}}[/itex] + 4
Y = - [itex]\frac{1}{s(s^{2}-1)}[/itex] + [itex]\frac{4s}{s^{2}-1}[/itex]
Partial fraction - [itex]\frac{1}{s(s^{2}-1)}[/itex]
[itex]\frac{1}{s}[/itex] -[itex]\frac{s}{s^{2}-1}[/itex] +[itex]\frac{4s}{s^{2}-1}[/itex]
inverse laplace transform
1-cos(t)+4cos(t) = > 1+3cos(t)
but the answer is 1+[itex]\frac{3}{2}[/itex] (e[itex]^{t}[/itex] + e[itex]^{-t}[/itex])
Please check my solution
Thank you