- #1
Sane
- 221
- 0
Given the two equations:
[tex]y(1) = \pi[/tex]
[tex]\frac{dy}{dx} = \frac{6x^{2}}{2y + \cos{y}}[/tex]
Solve for x:
[tex]\begin{align*}
\int(2y+\cos{y})dy &= \int(6x^{2})dx\\
y^{2} + \sin{y} &= 2x^{3}\\
\end{align*}[/tex]
But in order to set a value to the function y, I need some way to exclude y and then plug in 1 for x. How do I exclude y when it's in two separate terms?
Or is there an easier way to do this?
[tex]y(1) = \pi[/tex]
[tex]\frac{dy}{dx} = \frac{6x^{2}}{2y + \cos{y}}[/tex]
Solve for x:
[tex]\begin{align*}
\int(2y+\cos{y})dy &= \int(6x^{2})dx\\
y^{2} + \sin{y} &= 2x^{3}\\
\end{align*}[/tex]
But in order to set a value to the function y, I need some way to exclude y and then plug in 1 for x. How do I exclude y when it's in two separate terms?
Or is there an easier way to do this?
Last edited: