Solving a differential equation

Click For Summary
SUMMARY

The discussion focuses on solving the differential equation (xy + y² + x²) dx - (x²) dy = 0 using substitution methods. The user initially attempts to apply the substitution y = ux, leading to confusion regarding the factoring of x² from the equation. It is established that the equation is not exact, as the partial derivatives do not match, prompting the need for a substitution to transform it into a separable form. The correct approach involves recognizing the homogeneity of the function, allowing for simplification and easier resolution of the differential equation.

PREREQUISITES
  • Understanding of differential equations and their classifications
  • Familiarity with substitution methods in solving differential equations
  • Knowledge of exact differentials and how to verify them
  • Basic algebraic manipulation skills for factoring expressions
NEXT STEPS
  • Study the method of substitution in differential equations, specifically y = ux
  • Learn about exact differentials and techniques to convert non-exact equations into exact ones
  • Explore homogeneous functions and their properties in differential equations
  • Practice solving separable differential equations to reinforce understanding
USEFUL FOR

Students studying differential equations, educators teaching calculus, and anyone looking to deepen their understanding of solving complex differential equations through substitution methods.

MarcL
Messages
170
Reaction score
2

Homework Statement


Solve (xy+y2+x2) dx -( x2 )dy = 0

Homework Equations


to verify if exact [PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngM/[B][PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngy = [PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngN/[B][PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngx[/B][/B][/B][/B]

The Attempt at a Solution


So I can see it isn't separable and linear, so I thought of solving it through substitution

i did y=ux and dy= u dx + x du
and I substituted them in my first equation giving me
(xu+u2+x^2) dx - x2(udx + xdu) = 0]

I'm stuck here... the answer key factors out x^2 from the first equation leaving it with x^2(u+u^2+1), which doesn't make sense to me.. because if I factored out x^2 I would be left with (x-1u+x-2u2+1)
So any help on how I am seeing this wrong?
 
Last edited by a moderator:
Physics news on Phys.org
## \partial_y M=\partial_y(xy+y^2+x^2)=x+2y ##
## \partial_x N=\partial_x(-x^2)=-2x ##
## \partial_y M \neq \partial_x N! ##
 
I know how to verify if exact, hence why I chose substitution, but I am kinda stuck at how to factor my xα. Unless I didn't understand your answer correctly, to me it seems as if you're solving to see whether or not if exact.
 
That means your differential isn't exact which means it can't be integrated in this form, so you should turn it into an exact differential. There is such a method in your toolbox which you can't integrate the differential without it. You remember it?
 
Well I know I can use substitution to reach a separable equation. If not, I know I can use υ(x,y) and multiply it to my equation. My question was more towards the substitution method because I don't completely grasp the subject.
 
By some manipulation, you can get ## y'=\frac{y}{x}+\frac{y^2}{x^2}+1 ##. Now try your substitution!
 
I'm sorry, I'm not understanding. why you took the derivative of y. I was taught ( and my book explains) a different way. For instance, we just have to find a coeffiecient of xα to then create a separable DE. anyway, I'll check again later, maybe this will help getting a clearer answer? :/
 
## M dx+N dy=0 \Rightarrow N dy=-M dx \Rightarrow \frac{dy}{dx}=- \frac{M}{N}##
 
MarcL said:

Homework Statement


Solve (xy+y2+x2) dx -( x2 )dy = 0

Homework Equations


to verify if exact [PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngM/[B][PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngy = [PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngN/[B][PLAIN]http://upload.wikimedia.org/math/5/2/c/52cc749bb1c32abf1dccf613bd847a6e.pngx[/B][/B][/B][/B]

The Attempt at a Solution


So I can see it isn't separable and linear, so I thought of solving it through substitution

i did y=ux and dy= u dx + x du
and I substituted them in my first equation giving me
(xu+u2+x^2) dx - x2(udx + xdu) = 0]

I'm stuck here... the answer key factors out x^2 from the first equation leaving it with x^2(u+u^2+1), which doesn't make sense to me.. because if I factored out x^2 I would be left with (x-1u+x-2u2+1)
So any help on how I am seeing this wrong?


If you substitute ##y = x u## into the DE
x^2 \frac{dy}{dx} = x^2 + xy + y^2 \; \Rightarrow \frac{dy}{dx} = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2
the resulting DE for ##u## is very simple and is straightforward to solve.
 
Last edited by a moderator:
  • #10
Yeah it was a stupid mistake, I was going fast and stressing out over an exam. I should've noticed that replacing y = ux into the equation can allow me to factor out x^2 because the function is homogeneous.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K