Solving a first order matrix differential equation

Click For Summary

Homework Help Overview

The discussion revolves around solving a first order matrix differential equation related to a continuous-time Markov chain with two states. Participants are analyzing the generator matrix and the transition matrix to find the stationary distribution and verify its properties over time.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the eigendecomposition of the generator matrix and the computation of the matrix exponential. There are attempts to derive the transition matrix and its limit as time approaches infinity. Some participants question the correctness of the initial conditions and the resulting expressions for the transition matrix.

Discussion Status

There is ongoing exploration of the calculations involved in finding the transition matrix and its limit. Some participants have identified errors in their reasoning, while others have provided clarifications and corrections. Multiple interpretations of the problem are being discussed, and guidance has been offered regarding the computation of the matrix exponential.

Contextual Notes

Participants are working under the constraints of homework rules, which may limit the amount of direct assistance they can provide to one another. There are also references to external sources for verification of results, indicating a reliance on established literature for understanding the problem.

docnet
Messages
796
Reaction score
486
Homework Statement
TL;DR: solving for ##P(t)=e^{Qt}## doesn't go as planned, ending up with an answer that is similar to the given answer, but with missing terms in each entry.
Relevant Equations
.
Let X be a continuous-time Markov chain that hops between two states ##\{1, 2\}## with rates ##\lambda, \mu>0##, so its generator is
$$Q = \begin{pmatrix}
-\mu & \mu\\
\lambda & -\lambda
\end{pmatrix}.$$
Solve ##\pi Q = 0## for the stationary distribution, and verify that ##P_{ij}(t)\longrightarrow \pi_j## as ##t\longrightarrow \infty.##
\\\\
By looking at ##Q, ## it is easy to see that ##\text{Row }1 \cdot \lambda +\text{Row }2\cdot \mu =0##. This implies ##\pi = (\lambda,\mu) C## for a constant ##C## such that ##\pi_1+\pi_2=1.## Solving for ##C,## we have
$$(\lambda + \mu)C = 1,$$
$$C = \frac{1}{\lambda + \mu}.$$
And so
$$\pi = \Big(\frac{\lambda}{\lambda + \mu}, \frac{\mu}{\lambda + \mu}\Big).$$
\\\\
We know from Wiki that the transition matrix ##P(t)## is
$$P(t)=Ce^{Qt}$$
where ##C## is a constant matrix that is determined by the initial condition ##P(0)=I.## In order to find ##e^{Qt},## we use the eigendecomposition of ##Qt.## The eigenvectors of ##Q## are
$$\begin{pmatrix}
\mu & -\lambda
\end{pmatrix}
\text{ and }
\begin{pmatrix}
1 & 1
\end{pmatrix}$$
with respective eigenvalues ##-(\mu+\lambda)## and ##0##. And so we have the eigendecomposition
$$
Qt =
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
-(\mu+\lambda)t & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\lambda & \mu\\
1 & 1
\end{pmatrix}^{-1}.$$
And so,
\begin{align*}
e^{Qt}&=
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
e^{-(\mu+\lambda)t} & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}^{-1}\\
&= \begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
\frac{e^{-(\mu+\lambda)t}}{\mu+\lambda} & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & -1\\
\lambda & \mu
\end{pmatrix}\\
&= \begin{pmatrix}
\frac{\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}&\frac{-\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}\\
\frac{-\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}& \frac{\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}
\end{pmatrix}.
\end{align*}
However, this solution does not satisfy the initial condition ##P(0)=I##. My answer differs from the true solution given by wiki, which is given by Wiki as
$$P(t)=
\begin{pmatrix}
\frac{\lambda}{\mu+\lambda} + \frac{\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}&\frac{\mu}{\mu+\lambda} +\frac{-\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}\\
\frac{\lambda}{\mu+\lambda} +\frac{-\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}& \frac{\mu}{\mu+\lambda} + \frac{\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}
\end{pmatrix}.$$

My solution is lacking the terms
$$\begin{pmatrix}
\frac{\lambda}{\lambda + \mu} & \frac{\mu}{\lambda + \mu}\\
\frac{\lambda}{\lambda + \mu} & \frac{\mu}{\lambda + \mu}
\end{pmatrix}.$$
Which is $$\lim_{t \to \infty}P(t).$$

I've tried for a while and don't see where these terms could have come from, and where I made a mistake in computing ##e^{Qt}.##
 
Physics news on Phys.org
##e^0 = 1 \neq 0##
 
  • Like
Likes   Reactions: docnet
🤣 :doh: How embarrassing..
 
I am just winging it. :headbang:
 
Thank you for pointing out my error.
 
docnet said:
🤣 :doh: How embarrassing..
We all do those things from time to time.
 
  • Like
Likes   Reactions: docnet
$$P(t)=e^{Qt}$$
We use the eigendecomposition of ##Qt.## The eigenvectors of ##Q## are
$$\begin{pmatrix}
\mu & -\lambda
\end{pmatrix}
\text{ and }
\begin{pmatrix}
1 & 1
\end{pmatrix}$$
with respective eigenvalues ##-(\mu+\lambda)## and ##0##. And so we have the eigendecomposition
$$
Qt =
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
-(\mu+\lambda)t & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}^{-1}.$$
And so,
\begin{align*}
e^{Qt}&=
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
e^{-(\mu+\lambda)t} & 0 \\
0 & e^0
\end{pmatrix}
\begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}^{-1}\\
&=\frac{1}{\mu+\lambda} \begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
e^{-(\mu+\lambda)t} & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1\\
\lambda & \mu
\end{pmatrix}\\
&=\frac{1}{\mu+\lambda} \begin{pmatrix}
\mu & 1\\
-\lambda & 1
\end{pmatrix}
\begin{pmatrix}
e^{-(\mu+\lambda)t} & -e^{-(\mu+\lambda)t}\\
\lambda & \mu
\end{pmatrix}\\
P(t)&=
\begin{pmatrix}
\frac{\lambda}{\mu+\lambda} + \frac{\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}&\frac{\mu}{\mu+\lambda} +\frac{-\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}\\
\frac{\lambda}{\mu+\lambda} +\frac{-\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}& \frac{\mu}{\mu+\lambda} + \frac{\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}
\end{pmatrix}.
\end{align*}
We take the limit of ##P(t)## as ##t\longrightarrow \infty##.
\begin{align*}
\lim_{t \to \infty}P(t)&= \lim_{t \to \infty}\begin{pmatrix}
\frac{\lambda}{\mu+\lambda} + \frac{\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}&\frac{\mu}{\mu+\lambda} +\frac{-\mu e^{-(\mu+\lambda)t}}{\mu+\lambda}\\
\frac{\lambda}{\mu+\lambda} +\frac{-\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}& \frac{\mu}{\mu+\lambda} + \frac{\lambda e^{-(\mu+\lambda)t}}{\mu+\lambda}
\end{pmatrix}\\
&=
\begin{pmatrix}
\frac{\lambda}{\lambda + \mu} & \frac{\mu}{\lambda + \mu}\\
\frac{\lambda}{\lambda + \mu} & \frac{\mu}{\lambda + \mu}
\end{pmatrix}.
\end{align*}
And so ##P_{ij}(t)\longrightarrow \pi_j## as ##t\longrightarrow \infty##.


Edit: ##LATEX## Embedding.
 
Last edited:

Similar threads

Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K