Solving a Problem: Forces Acting on P

  • Thread starter Thread starter greg_rack
  • Start date Start date
  • Tags Tags
    Forces
greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
The smooth particle P is attached to an elastic cord extending from O to P. Due to the slotted arm guide, P moves along an horizontal path(##r=0.8sin(\theta)##) with constant angular velocity of ##\dot{\theta}=5rad/s##.
The mass of P is 0.08kg, the cord stiffness is k=30N/m and its unstretched length 0.25m.

Find the forces of the guide acting on P for theta=60
Relevant Equations
velocity and acceleration components in polar coordinates, Newton's 2nd law.
Screenshot 2021-11-22 174214.jpg
Hello guys,

here's a problem which I'm having troubles solving.
It asks for the forces acting on P when ##\theta=60^{\circ}##.
I thought for this problem it would have been convenient to consider a polar reference system(r, theta). Drawing the FBD of pin P at a moment in time, we will have 3(?) forces acting on P:
-one(##F_S##) along the r direction(pointing towards O caused by the spring-modeled cord, function of its stretch and k;
-one(##F_P##) along the positive(direction of movement) theta direction, caused by the push "from backwards" of the guide exerted on P;
-a last normal force, exerted by the circle normal to the path, thus not aligned with the r-theta system defined.

Could you tell me if these are all the forces acting, and thus the equations of motion(FBD+KD) might be built from them?
In case yes, now we could start writing down the EOMs to solve for ##F_P##.
$$
\left\{\begin{matrix}
F_S-Ncos\phi=m(\ddot{r}-r\dot{\theta}^2)\\
F_P-Nsin\phi=m(r\ddot{\theta}+2\dot{r}\dot{\theta})
\end{matrix}\right.$$

We may calculate ##F_S## from Hooke's law, but to solve for ##F_P## and N we still need ##\phi##.
The procedure to calculate such angle seemed kinda convoluted and thus got me thinking I wasn't on the right path... I was as well confused on the problem's request: do they mean "my" ##F_P## by "forces of the guide acting on P"?

Greg
 
Physics news on Phys.org
Yes, those are the forces.
There is an isosceles triangle formed among points O, P and center of circle.
Two of its angles should be 90-60 degrees.
 
greg_rack said:
##\dots~##we still need ϕ.
Suppose you defined ##\phi## as the angle subtended by the center of the wheel when the particle is at ##\theta## and such that ##\phi=0## when ##\theta=0## (particle at the 6 o'clock position). Note that ##\phi=180^{\circ}## when ##\theta=90^{\circ}## (particle at the 12 o' clock position). Can you deduce a general relation between ##\theta## and ##\phi##? After all, the dependence between ##\theta## and ##\phi## can only be linear. If you'd rather measure ##\phi## conventionally, i.e. relative to the 3 o' clock position, then it's a matter of adding (or subtracting) ##90^{\circ}##. Draw a good picture and you will see.
 
Thank you so much guys, now I see the relation!
I didn't realize that the direction of the normal force, was that of the radius of the circle. That helped me the most to spot ##\phi=f(\theta)##.
Too many triangles and scribbles o_O
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
3K
Replies
18
Views
4K
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
24
Views
3K