Solving a Problem: Forces Acting on P

  • Thread starter Thread starter greg_rack
  • Start date Start date
  • Tags Tags
    Forces
Click For Summary

Homework Help Overview

The discussion revolves around a problem involving forces acting on a point P in a polar reference system, specifically when the angle theta is set at 60 degrees. Participants are exploring the forces involved, including a spring force, a force due to a guide, and a normal force related to circular motion.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to identify the forces acting on point P and formulate equations of motion based on a free body diagram. Some participants confirm the identified forces and discuss the geometric relationships involved, particularly the angles in an isosceles triangle formed by points O, P, and the center of the circle.

Discussion Status

Participants are actively engaging with the problem, confirming the forces identified and exploring the relationship between the angles theta and phi. There is a productive exchange of ideas, with some participants providing insights that clarify the original poster's understanding of the problem.

Contextual Notes

There is mention of the need for the angle phi to solve for certain forces, and participants are discussing the geometric relationships that may help in determining this angle. The original poster expresses some confusion regarding the problem's request and the complexity of the calculations involved.

greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
The smooth particle P is attached to an elastic cord extending from O to P. Due to the slotted arm guide, P moves along an horizontal path(##r=0.8sin(\theta)##) with constant angular velocity of ##\dot{\theta}=5rad/s##.
The mass of P is 0.08kg, the cord stiffness is k=30N/m and its unstretched length 0.25m.

Find the forces of the guide acting on P for theta=60
Relevant Equations
velocity and acceleration components in polar coordinates, Newton's 2nd law.
Screenshot 2021-11-22 174214.jpg
Hello guys,

here's a problem which I'm having troubles solving.
It asks for the forces acting on P when ##\theta=60^{\circ}##.
I thought for this problem it would have been convenient to consider a polar reference system(r, theta). Drawing the FBD of pin P at a moment in time, we will have 3(?) forces acting on P:
-one(##F_S##) along the r direction(pointing towards O caused by the spring-modeled cord, function of its stretch and k;
-one(##F_P##) along the positive(direction of movement) theta direction, caused by the push "from backwards" of the guide exerted on P;
-a last normal force, exerted by the circle normal to the path, thus not aligned with the r-theta system defined.

Could you tell me if these are all the forces acting, and thus the equations of motion(FBD+KD) might be built from them?
In case yes, now we could start writing down the EOMs to solve for ##F_P##.
$$
\left\{\begin{matrix}
F_S-Ncos\phi=m(\ddot{r}-r\dot{\theta}^2)\\
F_P-Nsin\phi=m(r\ddot{\theta}+2\dot{r}\dot{\theta})
\end{matrix}\right.$$

We may calculate ##F_S## from Hooke's law, but to solve for ##F_P## and N we still need ##\phi##.
The procedure to calculate such angle seemed kinda convoluted and thus got me thinking I wasn't on the right path... I was as well confused on the problem's request: do they mean "my" ##F_P## by "forces of the guide acting on P"?

Greg
 
Physics news on Phys.org
Yes, those are the forces.
There is an isosceles triangle formed among points O, P and center of circle.
Two of its angles should be 90-60 degrees.
 
  • Like
Likes   Reactions: greg_rack
greg_rack said:
##\dots~##we still need ϕ.
Suppose you defined ##\phi## as the angle subtended by the center of the wheel when the particle is at ##\theta## and such that ##\phi=0## when ##\theta=0## (particle at the 6 o'clock position). Note that ##\phi=180^{\circ}## when ##\theta=90^{\circ}## (particle at the 12 o' clock position). Can you deduce a general relation between ##\theta## and ##\phi##? After all, the dependence between ##\theta## and ##\phi## can only be linear. If you'd rather measure ##\phi## conventionally, i.e. relative to the 3 o' clock position, then it's a matter of adding (or subtracting) ##90^{\circ}##. Draw a good picture and you will see.
 
  • Like
Likes   Reactions: greg_rack
Thank you so much guys, now I see the relation!
I didn't realize that the direction of the normal force, was that of the radius of the circle. That helped me the most to spot ##\phi=f(\theta)##.
Too many triangles and scribbles o_O
 
  • Like
Likes   Reactions: Lnewqban
  • Like
  • Love
Likes   Reactions: Steve4Physics and greg_rack
  • Like
Likes   Reactions: Lnewqban

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
4K
Replies
18
Views
4K
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
24
Views
3K