Solving a Related Rates Problem: Calculating Eva Wisnierska's Temperature Change

Click For Summary
The discussion revolves around calculating the rate of temperature change for paraglider Eva Wisnierska during her ascent in a thunderstorm. The initial approach involved using a slope calculation between temperature points at different altitudes, yielding a decrease of -4°F per 1000 feet. However, participants suggested using surrounding altitude points for a more accurate slope estimate, which resulted in -5.5°F per 1000 feet. The main challenge was converting this rate into degrees Fahrenheit per minute based on her ascent speed of 3000 ft/min. Ultimately, the conversation highlighted the need for careful consideration of data points and unit conversions to arrive at the correct temperature change rate.
oates151
Messages
11
Reaction score
0

Homework Statement


On February 16, 2007, paraglider Eva Wisnierska was caught in a freak thunderstorm over
Australia and carried upward at a speed of about 3000 ft/min. The table below gives the
temperature at various heights. Approximately how fast (in ◦F/min) was her ambient
temperature decreasing when she was at 4000 feet?
image.jpg



Homework Equations





The Attempt at a Solution



Well here's where I've gotten.

I am not sure, but this problem looks like some sort of related rates problem. We known dy/dt is 3000 ft/min, but we need in deg F/min, so what I did is a simple slope calculation for the point 4000 ft by doing

(60-52)/(2-4) and getting -4 deg F/1000 ft

From here, I'm not exactly sure how to manipulate and get the rate that we need. Am I on the right track? What's next?

Thanks so much!

-Pat
 
Physics news on Phys.org


oates151 said:

Homework Statement


On February 16, 2007, paraglider Eva Wisnierska was caught in a freak thunderstorm over
Australia and carried upward at a speed of about 3000 ft/min. The table below gives the
temperature at various heights. Approximately how fast (in ◦F/min) was her ambient
temperature decreasing when she was at 4000 feet?
image.jpg



Homework Equations





The Attempt at a Solution



Well here's where I've gotten.

I am not sure, but this problem looks like some sort of related rates problem. We known dy/dt is 3000 ft/min, but we need in deg F/min, so what I did is a simple slope calculation for the point 4000 ft by doing

(60-52)/(2-4) and getting -4 deg F/1000 ft

From here, I'm not exactly sure how to manipulate and get the rate that we need. Am I on the right track? What's next?
I would use the two alt., temp. points on either side. Between 2000' and 4000' the temperature dropped 8 deg F., but between 4000' and 6000', the temperature drop was quite a bit more. You would get a better estimate by using the two surrounding points in your data.

I disagree that this is a related rates problem. As I see it, it's a problem about estimating the slope of a curve from a set of data.
 


Oh, I see. So on that case, in order to get a more accurate method, i'd calculate the slope between the two surrounding points which gets us -5.5 deg f/1000 ft.

Now, they want the units in in deg F/min. Since she's carried upward at 3000 ft/min and the temperature is decreasing at -5.5 deg f/1000 ft, then

(3000 ft/min)(-5.5 deg f/1000ft)= 3 x -5.5 /min = 36 x -5.5 = -198 in deg F/min ?
 


No, I don't think so. Her vertical speed is 3000 ft/min. She rose from 2000' to 6000' in 4000/3000 minutes, or 4/3 minute, during which time the temperature dropped 22 deg. F. That's NOT going to be a drop of 198 deg F per minute.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
6
Views
2K
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
14K
  • · Replies 1 ·
Replies
1
Views
12K
  • · Replies 2 ·
Replies
2
Views
7K