MHB Solving an integral with trigonometric substitution

Click For Summary
The integral discussed is $$\int \frac{x^2}{(4 - x^2)^{3/2}}\,dx$$, which can be approached using the substitution $x = 2\sin\theta$. The differential changes to $dx = 2\cos\theta d\theta$. To find $\sqrt{4 - x^2}$, the substitution leads to $\sqrt{4 - (2\sin\theta)^2} = \sqrt{4(1 - \sin^2\theta)} = 2\cos\theta$. Understanding the identity $\sin^2\theta + \cos^2\theta = 1$ is crucial for this substitution. This method effectively simplifies the integral for further evaluation.
tmt1
Messages
230
Reaction score
0
I have this integral:

$$\int_{}^{} \frac {x^2}{{(4 - x^2)}^{3/2}}\,dx$$

I can see that we can substitute $x = 2sin\theta$, and $dx = 2cos\theta d\theta$, but I am unable to see how $\sqrt{4 - x^2} = 2cos\theta$. How can I get this substitution?
 
Physics news on Phys.org
tmt said:
I have this integral:

$$\int_{}^{} \frac {x^2}{{(4 - x^2)}^{3/2}}\,dx$$

I can see that we can substitute $x = 2sin\theta$, and $dx = 2cos\theta d\theta$, but I am unable to see how $\sqrt{4 - x^2} = 2cos\theta$. How can I get this substitution?
Recall the identity:. . \sin^2\theta + \cos^2\theta \:=\:1 \quad\Rightarrow\quad 1 - \sin^2\theta\:=\:\cos^2\theta

Substitute: x \:=\:2\sin\theta

\begin{array}{cccc}<br /> \text{Then:} &amp; \sqrt{4-x^2} \\<br /> &amp; =\;\sqrt{4-(2\sin\theta)^2} \\<br /> &amp; =\: \sqrt{4 -4\sin^2\theta} \\<br /> &amp; =\; \sqrt{4(1-\sin^2\theta)} \\<br /> &amp; =\; \sqrt{4\cos^2\theta} \\<br /> &amp; =\:2\cos\theta \end{array}

 
Do you understand the identity $\sin^2(x)+\cos^2(x)=1$ ?

Can you apply that identity to answer your question?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K