MHB Solving for a+b+c in $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
To solve for \( a + b + c \) in triangle \( ABC \) with given conditions, the angle \( A \) is \( 60^\circ \), the area is \( 10\sqrt{3} \), and the sum of the squares of the sides is \( 138 \). The area can be expressed using the formula \( \text{Area} = \frac{1}{2}ab\sin(A) \), leading to \( ab = 20 \). Using the Law of Cosines, the relationship \( c^2 = a^2 + b^2 - ab \) can be applied. By substituting known values and solving the resulting equations, \( a + b + c \) can be determined. The final result for \( a + b + c \) is derived from these calculations.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC$ (with side length $a,b,c$)

given :

$(1)\angle A=60^o$

$(2)$ the area of $\triangle ABC=10\sqrt 3$

$(3) a^2+b^2+c^2=138$

please find :$a+b+c=?$
 
Mathematics news on Phys.org
Re: find a+b+c

Albert said:
$\triangle ABC$ (with side length $a,b,c$)

given :

$(1)\angle A=60^o$

$(2)$ the area of $\triangle ABC=10\sqrt 3$

$(3) a^2+b^2+c^2=138$

please find :$a+b+c=?$

Area of $\triangle ABC = \frac 1 2 b c \sin 60^\circ = 10\sqrt 3$.
So:
$$bc = 40 \qquad \qquad \qquad \qquad [1]$$

Cosine rule, using [1]:
$$a^2 = b^2+c^2 - 2bc \cos 60^\circ$$
$$a^2 = b^2+c^2 - 2\cdot 40 \cdot \frac 1 2$$
$$b^2+c^2 = a^2 + 40 \qquad \qquad [2]$$

From the given statement with [2]:
$$a^2+b^2+c^2=138$$
$$a^2+(a^2+40)=138$$
$$a=7$$

Back substituting in [2]:
$$b^2+c^2 = 7^2 + 40 = 89 \qquad [3]$$

Note that with [1] and [3]:
$$(b+c)^2 = b^2 + 2bc + c^2 = 89 + 2 \cdot 40 = 169$$

It follows that:
$$b+c = 13$$
And therefore:
$$a+b+c = 7 + 13 = 20$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
6
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Back
Top