Solving for a variable in an equation with fractional powers

AI Thread Summary
The discussion revolves around solving an equation with fractional powers, specifically manipulating the equation to isolate the variable. Participants suggest setting substitutions like ##\mu^{\frac{1}{2}}=\nu## to simplify the equation into a polynomial form, although initial attempts yield unsatisfactory results. A more effective approach involves recognizing that approximating ##\epsilon \approx \mu## can lead to a cubic equation, which simplifies the problem. The final formulation suggests using Taylor expansion around ##x=\epsilon## to derive a solution. The conversation emphasizes the importance of careful manipulation and approximation in solving complex equations.
archaic
Messages
688
Reaction score
214
Homework Statement
$$\epsilon^\frac32=\mu^\frac32+\frac{\left(\pi k_B T\right)^2}{8}\frac1{\mu^\frac12}$$
I am given that ##\epsilon\approx\mu## and ##(1+x)^\alpha\approx1+\alpha x## when ##x\to0##.
Relevant Equations
##(1+x)^\alpha\approx1+\alpha x## when ##x\to0##
I have tried manipulating this to
$$1-\frac{8}{(\pi k_B T)^2}\mu^\frac12(\epsilon^\frac32-\mu^\frac32)=0\Leftrightarrow\left[1+\mu^\frac12(\epsilon^\frac32-\mu^\frac32)\right]^{-\frac{8}{(\pi k_B T)^2}}=0$$
but this doesn't seem to lead anywhere.
any hints please?

the solution is one of these ##T_f=\epsilon/k_B##:
tETTp.png
 
Physics news on Phys.org
If you set ##\mu^{\frac{1}{2}}=\nu## for convenience, and multiply the equation with ##\nu## then you have a polynomial equation which may be solvable. The exponent in your formula is wrong.
 
fresh_42 said:
If you set ##\mu^{\frac{1}{2}}=\nu## for convenience, and multiply the equation with ##\nu## then you have a polynomial equation which may be solvable. The exponent in your formula is wrong.
I don't think so. I tried that with wolfram, but the result was very bad.
how so?
 
archaic said:
I don't think so. I tried that with wolfram, but the result was very bad.
how so?
It's always best to make simplifications at the very last. So multiplying with ##\mu^{\frac{1}{2}}## results in
$$
0=\mu^{\frac{1}{2}}\cdot \left(\mu^{\frac{3}{2}}-\varepsilon^{\frac{3}{2}}\right) +\dfrac{\left(\pi k_B T\right)^2}{8}=\mu^{\frac{1}{2}}\cdot\left(\mu+\mu^{\frac{1}{2}}\varepsilon^{\frac{1}{2}}+\varepsilon \right)\cdot\left(\mu^{\frac{1}{2}}-\varepsilon^{\frac{1}{2}}\right)+\dfrac{\left(\pi k_B T\right)^2}{8}
$$
What if you now start to apply the hints? But I don't see how we can deal with ##\mu^{\frac{1}{2}}-\varepsilon^{\frac{1}{2}}##.
 
Last edited:
  • Like
Likes archaic
Here's a quick-ish and dirty way, just making use of ##\epsilon \approx \mu##. Since ##\epsilon^\frac32 = \mu^\frac32+\frac{\left(\pi k_B T\right)^2}{8\mu^\frac12}## you have ##\epsilon^3 = \left( \mu^\frac32+\frac{\left(\pi k_B T\right)^2}{8\mu^\frac12} \right)^2 \approx \mu^3 \left( 1 + \frac{\left(\pi k_B T\right)^2}{4\mu^2} \right)##. This is a cubic ##

\mu^3 + \frac{\left(\pi k_B T\right)^2}{4} \mu - \epsilon^3 \approx 0

##. But ##\mu^3 - \epsilon^3 = (\mu - \epsilon)(\mu^2 + \mu \epsilon + \epsilon^2) \approx 3\mu^2 (\mu - \epsilon)## and so ##\mu^2 - \epsilon \mu + \frac{\left(\pi k_B T\right)^2}{12} \approx 0## and \begin{align*}

\mu_{+} \approx \frac{\epsilon + \sqrt{\epsilon^2 - \frac{\left(\pi k_B T\right)^2}{3}} }{2} \approx \epsilon\left( 1 -\frac{\left(\pi k_B T\right)^2}{12 \epsilon^2} \right) = \epsilon\left( 1 - \frac{\pi^2}{12} \left( \frac{T}{T_f} \right)^2 \right)

\end{align*}
 
  • Like
Likes archaic and fresh_42
thank you! never mind my other message.
 
I rewrote the equation as ##x^3=y^3+c/y## and substituted ##y=x(1-\alpha)##. Discarding ##\alpha^2## etc. this gives ##y=x(1-\frac c{3x^4-c})##. This does not seem to match any of the choices.
 
haruspex said:
I rewrote the equation as ##x^3=y^3+c/y## and substituted ##y=x(1-\alpha)##. Discarding ##\alpha^2## etc. this gives ##y=x(1-\frac c{3x^4-c})##. This does not seem to match any of the choices.
a more formal way to find the result is to write$$\epsilon^\frac32\mu^\frac12-\mu^2-\frac{\left(\pi k_B T\right)^2}{8}=0$$$$f(x)=\epsilon^\frac32x^\frac12-x^2-\frac{\left(\pi k_B T\right)^2}{8}$$and compute the taylor expansion about ##x=\epsilon##. since ##\epsilon\approx\mu##, we ignore higher order terms.$$-\frac{\left(\pi k_B T\right)^2}{8}-\frac{3\epsilon}{2}\left(\mu-\epsilon\right)=0$$
 
Back
Top