MHB Solving for Real Numbers $a$ and $b$ in $f(x)=\dfrac{1}{ax+b}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,


This problem has given me a very hard time because I have exhausted all the methods that I know to figure out a way to find for the values for both a and b but no, there must be a trick to this problem and I admit that it is a question that is out of my reach...

Could you show me how to attack this problem, please?

Thanks in advance.:)

Problem:

For real numbers $a$ and $b$ define $f(x)=\dfrac{1}{ax+b}$. For which $a$ and $b$ are there three distinct real numbers $x_1, x_2, x_3$ such that $f(x_1)=x_2$, $f(x_2)=x_3$ and $f(x_3)=x_1$?
 
Mathematics news on Phys.org
anemone said:
Hi MHB,


This problem has given me a very hard time because I have exhausted all the methods that I know to figure out a way to find for the values for both a and b but no, there must be a trick to this problem and I admit that it is a question that is out of my reach...

Could you show me how to attack this problem, please?

Thanks in advance.:)

Problem:

For real numbers $a$ and $b$ define $f(x)=\dfrac{1}{ax+b}$. For which $a$ and $b$ are there three distinct real numbers $x_1, x_2, x_3$ such that $f(x_1)=x_2$, $f(x_2)=x_3$ and $f(x_3)=x_1$?


some one may come with a neat method but one solution I suggest is

f(f(f(x) = x

now f(f(1/(ax+b)) = x
 
anemone said:
Hi MHB,


This problem has given me a very hard time because I have exhausted all the methods that I know to figure out a way to find for the values for both a and b but no, there must be a trick to this problem and I admit that it is a question that is out of my reach...

Could you show me how to attack this problem, please?

Thanks in advance.:)

Problem:

For real numbers $a$ and $b$ define $f(x)=\dfrac{1}{ax+b}$. For which $a$ and $b$ are there three distinct real numbers $x_1, x_2, x_3$ such that $f(x_1)=x_2$, $f(x_2)=x_3$ and $f(x_3)=x_1$?


With trivial substitions You should arrive to the second order equation...

$\displaystyle a\ (a+b)\ x_{1}^{2} + (a + 2\ b - a\ b)\ x_{1} + b - 1 =0\ (1)$

... and the condition for real solution of Your system is to be $\ge 0$ the discriminant of (1)... if the solutions are also 'distinct' is of course a different problem...

Kind regards

$\chi$ $\sigma$
 
anemone said:
For real numbers $a$ and $b$ define $f(x)=\dfrac{1}{ax+b}$. For which $a$ and $b$ are there three distinct real numbers $x_1, x_2, x_3$ such that $f(x_1)=x_2$, $f(x_2)=x_3$ and $f(x_3)=x_1$?
I prefer to call the numbers $x,\ y,\ z$, so that $f(x)=y$, $f(y) = z$ and $f(z)= x$. Then $y = \dfrac1{ax+b}$, $$z = \frac1{\frac a{ax+b} + b} = \frac{ax+b}{abx+b+b^2},$$ $$ x = \frac1{\frac{a^2x+ab}{abx+b+b^2} + b} = \frac{abx+b+b^2}{(a^2+ab^2)x + 2ab + b^2}.$$ Therefore $$(a^2+ab^2)x^2 + (2ab + b^2)x = abx+b+b^2$$, which simplifies to $a(a+b^2)x^2 + b(a+b^2)x - (a+b^2) = 0.$ Divide through by $a+b^2$ to get $ax^2+bx-1 = 0.$ But now we are in trouble, because if $ax^2+bx-1 = 0$ then (dividing through by $x$) $\frac1x = ax+b$, which means that $x = \frac1{ax+b} = y$, contradicting the requirement that $x$ and $y$ should be distinct.

Looking back to see what went wrong, you notice (if you did not do so at the time) that we divided that quadratic equation by the constant $a+b^2$ without considering the possibility that $a+b^2=0$. That is the only thing that can rescue the problem from having no solution, so it looks as though the answer to the question is that $a$ and $b$ must satisfy the condition $a+b^2=0$. That is certainly a necessary condition, and I leave it to you to check that it is also sufficient for the problem to have a solution.
 
chisigma said:
With trivial substitions You should arrive to the second order equation...

$\displaystyle a\ (a+b)\ x_{1}^{2} + (a + 2\ b - a\ b)\ x_{1} + b - 1 =0\ (1)$

... and the condition for real solution of Your system is to be $\ge 0$ the discriminant of (1)... if the solutions are also 'distinct' is of course a different problem...

Kind regards

$\chi$ $\sigma$

kaliprasad said:
some one may come with a neat method but one solution I suggest is

f(f(f(x) = x

now f(f(1/(ax+b)) = x

Thank you to both of you, kaliprasad and chisigma for the help!

Opalg said:
I prefer to call the numbers $x,\ y,\ z$, so that $f(x)=y$, $f(y) = z$ and $f(z)= x$. Then $y = \dfrac1{ax+b}$, $$z = \frac1{\frac a{ax+b} + b} = \frac{ax+b}{abx+b+b^2},$$ $$ x = \frac1{\frac{a^2x+ab}{abx+b+b^2} + b} = \frac{abx+b+b^2}{(a^2+ab^2)x + 2ab + b^2}.$$ Therefore $$(a^2+ab^2)x^2 + (2ab + b^2)x = abx+b+b^2$$, which simplifies to $a(a+b^2)x^2 + b(a+b^2)x - (a+b^2) = 0.$ Divide through by $a+b^2$ to get $ax^2+bx-1 = 0.$ But now we are in trouble, because if $ax^2+bx-1 = 0$ then (dividing through by $x$) $\frac1x = ax+b$, which means that $x = \frac1{ax+b} = y$, contradicting the requirement that $x$ and $y$ should be distinct.

Looking back to see what went wrong, you notice (if you did not do so at the time) that we divided that quadratic equation by the constant $a+b^2$ without considering the possibility that $a+b^2=0$. That is the only thing that can rescue the problem from having no solution, so it looks as though the answer to the question is that $a$ and $b$ must satisfy the condition $a+b^2=0$. That is certainly a necessary condition, and I leave it to you to check that it is also sufficient for the problem to have a solution.

Good answer, with an excellent explanation! Mr. Opalg, I can't tell you how thankful that I am for all your help!

I realized now that for any given equation, in order to keep it balance, not only we can add/subtract the same quantity from both sides of the equation, we can also take square root to it, square it, divide the whole equation by some quantity which isn't zero (such as the situation in this instance), I am so happy that I learned something so valuable today! Thank you so so much, Opalg!
 
Opalg said:
That is the only thing that can rescue the problem from having no solution, so it looks as though the answer to the question is that $a$ and $b$ must satisfy the condition $a+b^2=0$. That is certainly a necessary condition, and I leave it to you to check that it is also sufficient for the problem to have a solution.

Btw,:) I used the graph of the function $f(x)=\dfrac{1}{ax+b}=\dfrac{1}{-b^2x+b}$ below to check that the condition $a+b^2=0$ suggests that there are three distinct real numbers $x_1, x_2, x_3$ such that $f(x_1)=x_2$, $f(x_2)=x_3$ and $f(x_3)=x_1$:

View attachment 1467
 

Attachments

  • Verification.JPG
    Verification.JPG
    30.4 KB · Views: 102
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top