Solving for relativistic velocity using Newtonian physics

Click For Summary
The discussion addresses solving for relativistic velocity using Newtonian physics, particularly focusing on the time until two cars collide. It clarifies that the mutual speed of the two cars can exceed the speed of light, calculated as 1.25c, which raises questions about the validity of such a result. The conversation emphasizes the need to apply relativistic velocity composition when determining the speed of one car relative to the other, yielding a speed of approximately 0.909c. It also instructs on calculating the time to collision by dividing the initial distance by the mutual speed, while noting the importance of using the Lorentz factor (γ) to find the contracted distance. The discussion concludes by highlighting the necessity of understanding these concepts to avoid misconceptions in relativistic scenarios.
gtguhoij
Messages
33
Reaction score
2
Homework Statement
Here is another exercise focusing on how the distance, or gap, between two objects changes over time. If a taxi is racing toward you from the north at 3/4 light speed, and another taxi is racing toward you from the south at 1/2 light speed, how quickly from your perspective is each taxi approaching the other?
Relevant Equations
d = vt


The answer is tD = [D_0 - 3/4ct - 1/2ct] I just have 2 questions.

I realize for 2 vectors approaching it is negative for distance and for velocity positive. What be the rule for time? How do I find vector answers for velocity and distance and time?

I am confused why I have "td = ..." ? Can someone explain? "td" doesn't even make sense.
 
Physics news on Phys.org
Leave vectors aside. You are one single observer; for you, the “mutual “ speed (wording used by W. Rindler in his book on relativity) by which the given distance between cars ( consider them as material points) decreases is simply :

##v = 0.75c +0.5c =1.25c##

no wonder that this result is greater that ##c##. No relativistic composition of speeds is to be made here. This is the answer to “how quickly...”.
So, if you are given the initial distance of the cars , simply divide it by that mutual speed, and this is the time for them to crash into each other, according to your wrist watch.
Be careful, don’t stay on their trajectory, if you don’t want to be reduced into a bloody steak.
But the point where they meet isn’t probably your original position .
 
Last edited:
I ‘ ll add another clarification. The relativistic composition of velocities applies here if taxi driver A wants to know what is the speed of taxi B relative to him. The result is less than ##c##, as can be easily verified: 0.909c (approx).
Which is the wrist watch time for collision, for both A and B?
Determine the ##\gamma ## factor using the speed just found .
Determine the contracted distance ##\frac{D}{\gamma}## between cars.
Divide this contracted distance by the relativistic speed, and you are done.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
Replies
41
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
5K
Replies
1
Views
2K