Solving Integral: $\int_{1}^{9} \frac{3x-2}{\sqrt{x}}dx = 44$

  • Context: Undergrad 
  • Thread starter Thread starter mothership
  • Start date Start date
Click For Summary
SUMMARY

The integral $\int_{1}^{9} \frac{3x-2}{\sqrt{x}}dx$ evaluates to 44. The solution involves breaking the integral into two parts: $\int_{1}^{9}\frac{3x}{x^{\frac{1}{2}}}dx$ and $\int_{1}^{9}\frac{2}{x^{\frac{1}{2}}}dx$. The calculations yield $3 \left[ \frac{2}{3}(x^{\frac{3}{2}}) \right]_{1}^{9} - 2 \left[ 2x^{\frac{1}{2}} \right]_{1}^{9}$, leading to the final result of 44 after evaluating the definite integrals.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with integral calculus techniques
  • Knowledge of power functions and their properties
  • Ability to perform algebraic simplifications
NEXT STEPS
  • Study techniques for evaluating definite integrals
  • Learn about the Fundamental Theorem of Calculus
  • Explore integration by substitution methods
  • Investigate applications of integrals in real-world problems
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking for clear examples of integral evaluation techniques.

mothership
Messages
1
Reaction score
0
<br /> \begin{equation*}<br /> \begin{split}<br /> \int_{1}^{9} \frac{3x-2}{\sqrt{x}}dx &amp;= \int_{1}^{9}\frac{3x}{x^{\frac{1}{2}}}dx - \int_{1}^{9}\frac{2}{x^{\frac{1}{2}}}dx \\ \\<br /> &amp;= 3\int_{1}^{9}x^{\frac{1}{2}}dx - 2\int_{1}^{9}x^{\frac{-1}{2}}dx \\ \\<br /> &amp;= 3 \left[ \frac{2}{3}(x^{\frac{3}{2}}) \right]_{1}^{9} - 2 \left[ 2x^{\frac{1}{2}} \right]_{1}^{9} \\ \\<br /> &amp;= 2 \left[9^{\frac{3}{2}} - 1 \right] - 4 \left[ 9^{\frac{1}{2}} - 1 \right] \\ \\<br /> &amp;= 2 \left[27 - 1 \right] - 4 \left[ 3 - 1 \right] \\ \\<br /> &amp;= 2*26 - 4*2 \\ \\<br /> &amp;= 44 \\<br /> \end{split}<br /> \end{equation*}<br />
 
Physics news on Phys.org
I don't know who Josh is and,in case you haven't figured out yourself yet,the solution you found is perfect...

Daniel.
 
Hopefully, Josh will agree with Daniel on this issue.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K