Solving Integrals with Substitution

Click For Summary
SUMMARY

This discussion focuses on solving integrals using substitution, specifically the integrals \(\int \frac{\sqrt{x}}{\sqrt{x}+1}dx\) and \(\int x^{3}\cdot \sqrt{7+3x}\cdot dx\). The substitution \(u = \sqrt{x} + 1\) is proposed, leading to the expression \(dx = 2\sqrt{x} \, du\). The integration process involves rewriting the integrals in terms of \(u\) and applying techniques such as long division and back-substitution to arrive at the final results.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of algebraic manipulation and simplification
  • Ability to perform back-substitution in integrals
NEXT STEPS
  • Study advanced techniques in integration, such as integration by parts
  • Learn about definite integrals and their applications
  • Explore the use of trigonometric substitution in integrals
  • Investigate numerical methods for approximating integrals
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to enhance their teaching methods in integral calculus.

Yankel
Messages
390
Reaction score
0
Hello,

I need some help solving this integral,

\[\int \frac{\sqrt{x}}{\sqrt{x}+1}dx...u=\sqrt{x}+1\][\tex]

After I make the substitution I get stuck a little bit, because I can't get rid of dx.

and also this one, same principle,

\[\int x^{3}\cdot \sqrt{7+3x}\cdot dx ...u=7+3x\]

how do I get rid of x^3 ?

thanks
 
Last edited:
Physics news on Phys.org
Your substitution is a good one. If $$u=\sqrt{x}+1$$, then can you express $dx$ in terms of $u$ only? You should find:

$$du=\frac{1}{2\sqrt{x}}\,dx$$

Now, from this, you may write:

$$dx=2\sqrt{x}\,dx$$

Can you rewrite $$\sqrt{x}$$ in terms of $u$ using your original substitution?
 
Hello, Yankel!

\int \frac{\sqrt{x}}{\sqrt{x}+1}dx
Let u = \sqrt{x} \quad\Rightarrow\quad x = u^2 \quad\Rightarrow\quad dx = 2u\,du

Substitute: .\int \frac{u}{u+1}(2u\,du) \;=\;2\int\frac{u^2}{u+1}du

Long division: .2\int \left(u - 1 + \frac{1}{u+1}\right)\,du

. . . . =\;2\left(\tfrac{1}{2}u^2 - u + \ln|u+1|\right) + C

. . . . =\;u^2 - 2u + 2\ln|u+1| + CBack-substitute: .x - 2\sqrt{x} + 2\ln(\sqrt{x}+1) + C
 
Yankel said:
Hello,

I need some help solving this integral,

\[\int \frac{\sqrt{x}}{\sqrt{x}+1}dx...u=\sqrt{x}+1\][\tex]

After I make the substitution I get stuck a little bit, because I can't get rid of dx.

and also this one, same principle,

\[\int x^{3}\cdot \sqrt{7+3x}\cdot dx ...u=7+3x\]

how do I get rid of x^3 ?

thanks

[math]\displaystyle \begin{align*} \int{\frac{\sqrt{x}}{\sqrt{x} + 1}\,dx} &= \int{\frac{\left( \sqrt{x} \right) ^2 }{\sqrt{x} \left( \sqrt{x} + 1 \right) }\,dx} \\ &= 2\int{ \frac{ \left( \sqrt{x} \right) ^2 }{\sqrt{x} + 1} \cdot \frac{1}{2\sqrt{x}}\,dx} \end{align*}[/math]

Now following your suggested substitution, let [math]\displaystyle \begin{align*} u = \sqrt{x} + 1 \implies du = \frac{1}{2\sqrt{x}}\,dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} 2\int{ \frac{\left( \sqrt{x} \right) ^2}{\sqrt{x} + 1} \cdot \frac{1}{2\sqrt{x}}\,dx} &= 2\int{ \frac{ \left( u - 1 \right) ^2 }{ u } \, du} \\ &= 2\int{ \frac{u^2 - 2u + 1}{u} \, du } \\ &= 2\int{u - 2 + \frac{1}{u}\,du} \end{align*}[/math]

which can now be integrated.As for your second problem, [math]\displaystyle \begin{align*} u = 7 + 3x \implies du = 3\,dx \end{align*}[/math] is a good start...

[math]\displaystyle \begin{align*} \int{ x^3\,\sqrt{7 + 3x} \, dx} &= \frac{1}{3} \int{ 3x^3\,\sqrt{7 + 3x}\,dx} \\ &= \frac{1}{3} \int{ \left( \frac{u - 7 }{3} \right) ^3 \, \sqrt{u}\,du} \\ &= \frac{1}{3} \int{ \left( \frac{u^3 - 21u^2 + 147u - 343}{27} \right) u^{\frac{1}{2}} \,du} \\ &= \frac{1}{81} \int{ u^{\frac{7}{2}} - 21u^{\frac{5}{2}} + 147u^{\frac{3}{2}} - 343u^{\frac{1}{2}}\,du} \end{align*}[/math]

which can now be integrated.
 
this is how would i solve the problem

\begin{align*}\displaystyle \int\frac{\sqrt{x}}{\sqrt{x}+1}dx\\& let\,\,u\,=\sqrt{x}+1\\&\sqrt{x}\,=\,u-1\\& du\,=\,\frac{1}{2}x^{-\frac{1}{2}}dx\\& dx\,=\,\frac{2}{x^{-\frac{1}{2}}}du\\& rewrite\,\,dx\,as\,\,2\sqrt{x}\,du\\ then\,,\\\end{align*}
\begin{align*}\displaystyle \int\frac{\sqrt{x}}{\sqrt{x}+1}dx=\int\frac{u-1}{u}2(u-1)du\\ we\,\,now\,\, have\,\,\int\frac{2u^2-4u+2}{u}du\,\,(integrate\,\,the\,\,terms\,\,individualy)\\\end{align*}

\begin{align*}\displaystyle2\int udu-4\int du+2\int\frac{1}{u}du\\&2u^2-4u+2\ln|u|+c =(\sqrt{x}+1)^2-4\sqrt{x}+2\ln|\sqrt{x}|+c \\&expand(\sqrt{x}+1)^2 \\&=\,\,x-\sqrt{x}+2\ln|\sqrt{x}+1|+C\end{align*}

Hope this would help.:)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K