MHB Solving Integrals with Substitution

Click For Summary
The discussion focuses on solving integrals using substitution methods. For the integral \(\int \frac{\sqrt{x}}{\sqrt{x}+1}dx\), the substitution \(u = \sqrt{x} + 1\) is suggested, leading to the expression \(dx = 2\sqrt{x}du\). This allows the integral to be rewritten and simplified through long division, ultimately resulting in a solvable form. For the second integral \(\int x^{3}\sqrt{7+3x}dx\), the substitution \(u = 7 + 3x\) is recommended, which transforms the integral into a more manageable expression involving \(u\). The thread provides detailed steps for both integrals, emphasizing the importance of correctly expressing \(dx\) in terms of the new variable.
Yankel
Messages
390
Reaction score
0
Hello,

I need some help solving this integral,

\[\int \frac{\sqrt{x}}{\sqrt{x}+1}dx...u=\sqrt{x}+1\][\tex]

After I make the substitution I get stuck a little bit, because I can't get rid of dx.

and also this one, same principle,

\[\int x^{3}\cdot \sqrt{7+3x}\cdot dx ...u=7+3x\]

how do I get rid of x^3 ?

thanks
 
Last edited:
Physics news on Phys.org
Your substitution is a good one. If $$u=\sqrt{x}+1$$, then can you express $dx$ in terms of $u$ only? You should find:

$$du=\frac{1}{2\sqrt{x}}\,dx$$

Now, from this, you may write:

$$dx=2\sqrt{x}\,dx$$

Can you rewrite $$\sqrt{x}$$ in terms of $u$ using your original substitution?
 
Hello, Yankel!

\int \frac{\sqrt{x}}{\sqrt{x}+1}dx
Let u = \sqrt{x} \quad\Rightarrow\quad x = u^2 \quad\Rightarrow\quad dx = 2u\,du

Substitute: .\int \frac{u}{u+1}(2u\,du) \;=\;2\int\frac{u^2}{u+1}du

Long division: .2\int \left(u - 1 + \frac{1}{u+1}\right)\,du

. . . . =\;2\left(\tfrac{1}{2}u^2 - u + \ln|u+1|\right) + C

. . . . =\;u^2 - 2u + 2\ln|u+1| + CBack-substitute: .x - 2\sqrt{x} + 2\ln(\sqrt{x}+1) + C
 
Yankel said:
Hello,

I need some help solving this integral,

\[\int \frac{\sqrt{x}}{\sqrt{x}+1}dx...u=\sqrt{x}+1\][\tex]

After I make the substitution I get stuck a little bit, because I can't get rid of dx.

and also this one, same principle,

\[\int x^{3}\cdot \sqrt{7+3x}\cdot dx ...u=7+3x\]

how do I get rid of x^3 ?

thanks

[math]\displaystyle \begin{align*} \int{\frac{\sqrt{x}}{\sqrt{x} + 1}\,dx} &= \int{\frac{\left( \sqrt{x} \right) ^2 }{\sqrt{x} \left( \sqrt{x} + 1 \right) }\,dx} \\ &= 2\int{ \frac{ \left( \sqrt{x} \right) ^2 }{\sqrt{x} + 1} \cdot \frac{1}{2\sqrt{x}}\,dx} \end{align*}[/math]

Now following your suggested substitution, let [math]\displaystyle \begin{align*} u = \sqrt{x} + 1 \implies du = \frac{1}{2\sqrt{x}}\,dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} 2\int{ \frac{\left( \sqrt{x} \right) ^2}{\sqrt{x} + 1} \cdot \frac{1}{2\sqrt{x}}\,dx} &= 2\int{ \frac{ \left( u - 1 \right) ^2 }{ u } \, du} \\ &= 2\int{ \frac{u^2 - 2u + 1}{u} \, du } \\ &= 2\int{u - 2 + \frac{1}{u}\,du} \end{align*}[/math]

which can now be integrated.As for your second problem, [math]\displaystyle \begin{align*} u = 7 + 3x \implies du = 3\,dx \end{align*}[/math] is a good start...

[math]\displaystyle \begin{align*} \int{ x^3\,\sqrt{7 + 3x} \, dx} &= \frac{1}{3} \int{ 3x^3\,\sqrt{7 + 3x}\,dx} \\ &= \frac{1}{3} \int{ \left( \frac{u - 7 }{3} \right) ^3 \, \sqrt{u}\,du} \\ &= \frac{1}{3} \int{ \left( \frac{u^3 - 21u^2 + 147u - 343}{27} \right) u^{\frac{1}{2}} \,du} \\ &= \frac{1}{81} \int{ u^{\frac{7}{2}} - 21u^{\frac{5}{2}} + 147u^{\frac{3}{2}} - 343u^{\frac{1}{2}}\,du} \end{align*}[/math]

which can now be integrated.
 
this is how would i solve the problem

\begin{align*}\displaystyle \int\frac{\sqrt{x}}{\sqrt{x}+1}dx\\& let\,\,u\,=\sqrt{x}+1\\&\sqrt{x}\,=\,u-1\\& du\,=\,\frac{1}{2}x^{-\frac{1}{2}}dx\\& dx\,=\,\frac{2}{x^{-\frac{1}{2}}}du\\& rewrite\,\,dx\,as\,\,2\sqrt{x}\,du\\ then\,,\\\end{align*}
\begin{align*}\displaystyle \int\frac{\sqrt{x}}{\sqrt{x}+1}dx=\int\frac{u-1}{u}2(u-1)du\\ we\,\,now\,\, have\,\,\int\frac{2u^2-4u+2}{u}du\,\,(integrate\,\,the\,\,terms\,\,individualy)\\\end{align*}

\begin{align*}\displaystyle2\int udu-4\int du+2\int\frac{1}{u}du\\&2u^2-4u+2\ln|u|+c =(\sqrt{x}+1)^2-4\sqrt{x}+2\ln|\sqrt{x}|+c \\&expand(\sqrt{x}+1)^2 \\&=\,\,x-\sqrt{x}+2\ln|\sqrt{x}+1|+C\end{align*}

Hope this would help.:)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
4K