Solving Integrals with Substitution

Click For Summary

Discussion Overview

The discussion revolves around solving integrals using substitution techniques, specifically focusing on integrals involving square roots and polynomial expressions. Participants explore different substitution methods and the challenges associated with expressing differentials in terms of the new variable.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant presents the integral \(\int \frac{\sqrt{x}}{\sqrt{x}+1}dx\) and expresses difficulty in eliminating \(dx\) after substitution \(u=\sqrt{x}+1\).
  • Another participant suggests that if \(u=\sqrt{x}+1\), then \(du=\frac{1}{2\sqrt{x}}\,dx\) and prompts the original poster to express \(dx\) in terms of \(u\).
  • A different participant provides a detailed solution to the first integral, demonstrating the substitution and integration steps, including long division and back-substitution.
  • One participant reiterates the need for help with the same integral and introduces a second integral \(\int x^{3}\cdot \sqrt{7+3x}\cdot dx\), questioning how to handle \(x^3\) in the substitution process.
  • Another participant suggests that for the second integral, starting with \(u=7+3x\) and \(du=3\,dx\) is a good approach, and proceeds with the integration steps involving polynomial expressions.
  • A later reply outlines a method for solving the first integral, detailing the substitution and integration process, while also providing the final expression in terms of \(x\).

Areas of Agreement / Disagreement

Participants generally agree on the substitution methods for the integrals discussed, but there is no consensus on the best approach for handling the second integral involving \(x^3\). The discussion includes multiple perspectives and methods without a clear resolution.

Contextual Notes

Some participants express uncertainty about how to correctly express \(dx\) in terms of the new variable after substitution, indicating potential gaps in understanding the differential transformation process.

Yankel
Messages
390
Reaction score
0
Hello,

I need some help solving this integral,

\[\int \frac{\sqrt{x}}{\sqrt{x}+1}dx...u=\sqrt{x}+1\][\tex]

After I make the substitution I get stuck a little bit, because I can't get rid of dx.

and also this one, same principle,

\[\int x^{3}\cdot \sqrt{7+3x}\cdot dx ...u=7+3x\]

how do I get rid of x^3 ?

thanks
 
Last edited:
Physics news on Phys.org
Your substitution is a good one. If $$u=\sqrt{x}+1$$, then can you express $dx$ in terms of $u$ only? You should find:

$$du=\frac{1}{2\sqrt{x}}\,dx$$

Now, from this, you may write:

$$dx=2\sqrt{x}\,dx$$

Can you rewrite $$\sqrt{x}$$ in terms of $u$ using your original substitution?
 
Hello, Yankel!

\int \frac{\sqrt{x}}{\sqrt{x}+1}dx
Let u = \sqrt{x} \quad\Rightarrow\quad x = u^2 \quad\Rightarrow\quad dx = 2u\,du

Substitute: .\int \frac{u}{u+1}(2u\,du) \;=\;2\int\frac{u^2}{u+1}du

Long division: .2\int \left(u - 1 + \frac{1}{u+1}\right)\,du

. . . . =\;2\left(\tfrac{1}{2}u^2 - u + \ln|u+1|\right) + C

. . . . =\;u^2 - 2u + 2\ln|u+1| + CBack-substitute: .x - 2\sqrt{x} + 2\ln(\sqrt{x}+1) + C
 
Yankel said:
Hello,

I need some help solving this integral,

\[\int \frac{\sqrt{x}}{\sqrt{x}+1}dx...u=\sqrt{x}+1\][\tex]

After I make the substitution I get stuck a little bit, because I can't get rid of dx.

and also this one, same principle,

\[\int x^{3}\cdot \sqrt{7+3x}\cdot dx ...u=7+3x\]

how do I get rid of x^3 ?

thanks

[math]\displaystyle \begin{align*} \int{\frac{\sqrt{x}}{\sqrt{x} + 1}\,dx} &= \int{\frac{\left( \sqrt{x} \right) ^2 }{\sqrt{x} \left( \sqrt{x} + 1 \right) }\,dx} \\ &= 2\int{ \frac{ \left( \sqrt{x} \right) ^2 }{\sqrt{x} + 1} \cdot \frac{1}{2\sqrt{x}}\,dx} \end{align*}[/math]

Now following your suggested substitution, let [math]\displaystyle \begin{align*} u = \sqrt{x} + 1 \implies du = \frac{1}{2\sqrt{x}}\,dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} 2\int{ \frac{\left( \sqrt{x} \right) ^2}{\sqrt{x} + 1} \cdot \frac{1}{2\sqrt{x}}\,dx} &= 2\int{ \frac{ \left( u - 1 \right) ^2 }{ u } \, du} \\ &= 2\int{ \frac{u^2 - 2u + 1}{u} \, du } \\ &= 2\int{u - 2 + \frac{1}{u}\,du} \end{align*}[/math]

which can now be integrated.As for your second problem, [math]\displaystyle \begin{align*} u = 7 + 3x \implies du = 3\,dx \end{align*}[/math] is a good start...

[math]\displaystyle \begin{align*} \int{ x^3\,\sqrt{7 + 3x} \, dx} &= \frac{1}{3} \int{ 3x^3\,\sqrt{7 + 3x}\,dx} \\ &= \frac{1}{3} \int{ \left( \frac{u - 7 }{3} \right) ^3 \, \sqrt{u}\,du} \\ &= \frac{1}{3} \int{ \left( \frac{u^3 - 21u^2 + 147u - 343}{27} \right) u^{\frac{1}{2}} \,du} \\ &= \frac{1}{81} \int{ u^{\frac{7}{2}} - 21u^{\frac{5}{2}} + 147u^{\frac{3}{2}} - 343u^{\frac{1}{2}}\,du} \end{align*}[/math]

which can now be integrated.
 
this is how would i solve the problem

\begin{align*}\displaystyle \int\frac{\sqrt{x}}{\sqrt{x}+1}dx\\& let\,\,u\,=\sqrt{x}+1\\&\sqrt{x}\,=\,u-1\\& du\,=\,\frac{1}{2}x^{-\frac{1}{2}}dx\\& dx\,=\,\frac{2}{x^{-\frac{1}{2}}}du\\& rewrite\,\,dx\,as\,\,2\sqrt{x}\,du\\ then\,,\\\end{align*}
\begin{align*}\displaystyle \int\frac{\sqrt{x}}{\sqrt{x}+1}dx=\int\frac{u-1}{u}2(u-1)du\\ we\,\,now\,\, have\,\,\int\frac{2u^2-4u+2}{u}du\,\,(integrate\,\,the\,\,terms\,\,individualy)\\\end{align*}

\begin{align*}\displaystyle2\int udu-4\int du+2\int\frac{1}{u}du\\&2u^2-4u+2\ln|u|+c =(\sqrt{x}+1)^2-4\sqrt{x}+2\ln|\sqrt{x}|+c \\&expand(\sqrt{x}+1)^2 \\&=\,\,x-\sqrt{x}+2\ln|\sqrt{x}+1|+C\end{align*}

Hope this would help.:)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K