- #1

askor

- 169

- 9

<Moderator's note: Moved from a technical forum and thus no template.>

How to find this limit?

[tex]\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}[/tex]

I'd tried to find this limit as below but the result is 0:

[tex]\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}[/tex]

[tex]\lim_{x \to 0} \frac{5x} {3 - \sqrt{9-x}} × \frac{3 + \sqrt{9 - x}}{3 + \sqrt{9 - x}}[/tex]

[tex]\lim_{x \to 0} \frac{5x (3 + \sqrt{9 - x})} {(3 -\sqrt{9-x})(3 + \sqrt{9 - x})}[/tex]

[tex]\lim_{x \to 0} \frac{15x + 5x\sqrt{9 - x}} {9 - (9 - x)}[/tex]

[tex]\lim_{x \to 0} \frac{15x + \sqrt{5x}\sqrt{9 - x}} {9 - (9 - x)}[/tex]

How to find this limit?

[tex]\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}[/tex]

I'd tried to find this limit as below but the result is 0:

[tex]\lim_{x \to 0} \frac{5x} {3 -\sqrt{9-x}}[/tex]

[tex]\lim_{x \to 0} \frac{5x} {3 - \sqrt{9-x}} × \frac{3 + \sqrt{9 - x}}{3 + \sqrt{9 - x}}[/tex]

[tex]\lim_{x \to 0} \frac{5x (3 + \sqrt{9 - x})} {(3 -\sqrt{9-x})(3 + \sqrt{9 - x})}[/tex]

[tex]\lim_{x \to 0} \frac{15x + 5x\sqrt{9 - x}} {9 - (9 - x)}[/tex]

[tex]\lim_{x \to 0} \frac{15x + \sqrt{5x}\sqrt{9 - x}} {9 - (9 - x)}[/tex]

Last edited by a moderator: