Solving the SHM differential equation

AI Thread Summary
The discussion centers on solving a homogeneous linear differential equation related to simple harmonic motion (SHM). Participants explore the transition from one form of the solution to another, specifically from line 5 to line 6, using trigonometric identities and substitutions. Clarifications are provided regarding the arbitrary constants in the general solutions, emphasizing that they can be complex. The conversation also addresses the absence of an imaginary unit in certain expressions, concluding that both forms of the solution are valid despite their different appearances. Overall, the thread highlights the flexibility in representing solutions to SHM equations.
member 731016
Homework Statement
Please see below
Relevant Equations
x(t) = Ae^(αt)
I am trying to solve this homogenous linear differential equation
1670471233862.png
.
Since it is linear, I can use the substitution
1670471362312.png
.
Which gives,
1670471550898.png
(line 1)
1670471600562.png
(line 2)
1670471665871.png
(line 3)
1670471754837.png
(line 4)
1670472195684.png
(line 5)
Which according to Morin's equals,
1670471844926.png
(line 6)

However, could someone please show me steps how he got from line 5 to 6?

Also was is line 4 is it not:
1670472319014.png
? In other words, why dose B ≠ A?

Many thanks!
 
Last edited by a moderator:
Physics news on Phys.org
All of the expressions below are general solutions of your equation
  1. ##x=C_1e^{i\omega t}+C_2e^{-i\omega t}##
  2. ##x=A\sin\omega t+B\cos\omega t##
  3. ##x=D\sin(\omega t+\phi)##
You can verify that this is so by substituting in your ODE. Note that each expression has two arbitrary constants that are determined by the initial conditions, usually the values of ##x## and ##\frac{dx}{dt}## at ##t=0## that are appropriate to a particular situation..

You are asking how to go from 5 to 6 which is essentially going from my item 2 to 3. It is more obvious to see how to go from 3 to 2. Once you see that, you can reverse the algebra, if you wish.

Using a well known trig identity for the sine of a sum of angles,
$$D\sin(\omega t+\phi)=D\cos\phi \sin\omega t+D\sin\phi \cos\omega t.$$ If you identify $$A\equiv D\cos\phi~~\text{and}~~B\equiv D\sin\phi,$$you have item 2 above.
 
  • Like
Likes member 731016
kuruman said:
All of the expressions below are general solutions of your equation
  1. ##x=C_1e^{i\omega t}+C_2e^{-i\omega t}##
  2. ##x=A\sin\omega t+B\cos\omega t##
  3. ##x=D\sin(\omega t+\phi)##
You can verify that this is so by substituting in your ODE. Note that each expression has two arbitrary constants that are determined by the initial conditions, usually the values of ##x## and ##\frac{dx}{dt}## at ##t=0## that are appropriate to a particular situation..

You are asking how to go from 5 to 6 which is essentially going from my item 2 to 3. It is more obvious to see how to go from 3 to 2. Once you see that, you can reverse the algebra, if you wish.

Using a well known trig identity for the sine of a sum of angles,
$$D\sin(\omega t+\phi)=D\cos\phi \sin\omega t+D\sin\phi \cos\omega t.$$ If you identify $$A\equiv D\cos\phi~~\text{and}~~B\equiv D\sin\phi,$$you have item 2 above.
Thanks for your reply @kuruman ! Why don't you have and imaginary unit when going from line 1 to line 2? I though from Euler's identity it should be:
1670475675127.png
. However, are you assuming that the constant B accounts for that?

Many thanks!
 
All arbitrary coefficients are, well, arbitrary which means they could be complex.
 
  • Like
Likes member 731016
Ok thank you @kuruman ! I guess that means we could have the coefficient without the imaginary unit, which is cool because even thought the answers look different, they are both correct.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top