Something about retarded potentials for oscillating electric dipole

Click For Summary
SUMMARY

The discussion focuses on the potential vector of an oscillating electric dipole, represented by the equation ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}##. Key variables include ##I_0## (the current), ##d## (the distance between charges), and ##\vec{p}## (the dipole moment). The potential vector can be rewritten as ##\vec{A}=\frac{\mu_0}{4\pi}\frac{\vec{\dot p(t-r/c)}}{r}##, demonstrating the relationship between the dipole moment's time derivative and the potential vector. The final expression for the potential vector is ##\vec{A}(t,\vec{x})=\frac{\mu_0}{4 \pi} \frac{\dot{\vec{P}}(t-r/c)}{r}##, confirming the expected behavior of the dipole in an oscillating field.

PREREQUISITES
  • Understanding of oscillating electric dipoles
  • Familiarity with vector calculus and potential theory
  • Knowledge of electromagnetic theory, specifically retarded potentials
  • Proficiency in using SI units in physics equations
NEXT STEPS
  • Study the derivation of retarded potentials in electromagnetic theory
  • Learn about the implications of dipole radiation in classical electrodynamics
  • Explore the mathematical techniques for expanding charge-current distributions
  • Investigate the applications of oscillating dipoles in antenna theory
USEFUL FOR

Physicists, electrical engineers, and students studying electromagnetism, particularly those focusing on wave propagation and dipole radiation phenomena.

Salmone
Messages
101
Reaction score
13
In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis## where the dipole is oscillating, ##I_0## is the current (##I(t)=I_0cos(\omega t)##), ##d## is the distance between the charges of the dipole and ##r## is the distance between the origin of the system and the point where I want to calculate the potential vector. Let ##\vec{p}=\hat{k}qd=\frac{\hat{k}dI_0}{\omega}sin(\omega t)## be the dipole moment, it is possible to rewrite the potential vector as ##\vec{A}=\frac{\mu_0}{4\pi}\frac{\vec{\dot p(t-r/c)}}{r}## where ##\vec{\dot p}## is the derivative with respect to time.
 
Physics news on Phys.org
You can start with the source of a point charge,
$$\rho(t,\vec{x})=q \delta^{(3)}[\vec{x}-\vec{y}(t)], \quad \vec{j}(t,\vec{x})= q \dot{\vec{y}}(t) \delta^{(3)}[\vec{x}-\vec{y}(t)],$$
where ##\vec{y}(t)## is the trajectory of the charge.

Now we assume that
$$\vec{y}(t)=\vec{d} \sin(\omega t).$$
For ##r=|\vec{x}|\gg |\vec{d}|## we can expand the charge-current distribution up to first order in ##\vec{d}##,
$$\rho(t,\vec{x})=q \delta^{(3)}(\vec{x}) - q \vec{y}(t) \cdot \vec{\nabla} \delta^{(3)}(\vec{x}) + \mathcal{O}(\vec{d}^2), \quad \vec{j}(t,\vec{x})=q \dot{\vec{y}}(t) \delta^{(3)}(\vec{x}) + \mathcal{O}(\vec{d}^2).$$
From the first term of ##\rho## (of order ##\mathcal{O}(d^0)##) you get the electrostatic Coulomb field of a charge at rest in the origin (which you can easily verify using the retarded potential too).

For the terms of order ##\mathcal{O}(d)## you get for ##\vec{A}## (in SI units)
$$\vec{A}(t,\vec{x})=\frac{\mu_0}{4 \pi} \int_{\mathbb{R}^3} \mathrm{d}^3 x' \vec{j}(t-|\vec{x}-\vec{x}'|/c,\vec{x}') \frac{1}{|\vec{x}-\vec{x}'|}=\frac{\mu_0 q \omega \vec{d}}{4 \pi} \int_{\mathbb{R}^3} \mathrm{d}^3 \vec{x}' \cos[\omega (t-|\vec{x}-\vec{x}'|/c] \frac{\delta^{(3)}(\vec{x}')}{|\vec{x}-\vec{x}'|} = \frac{\mu_0 q \omega \vec{d}}{4 \pi r} \cos[\omega (t-r/c)].$$
With ##I_0=q \omega## that's the solution you are looking for.

The final equation, of course, must read
$$\vec{A}(t),\vec{x})=\frac{\mu_0}{4 \pi} \frac{\dot{\vec{P}}(t-r/c)}{r}.$$
 
  • Like
Likes   Reactions: Salmone

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
19
Views
4K