I Something about retarded potentials for oscillating electric dipole

AI Thread Summary
The discussion focuses on the potential vector for an oscillating electric dipole, expressed as A = (μ₀I₀d/4π)(cos(ω(t-r/c))/r), where various parameters define the system. The dipole moment is represented as p = (kdI₀/ω)sin(ωt), allowing the potential vector to be rewritten in terms of the time derivative of the dipole moment, A = (μ₀/4π)(ṗ(t-r/c)/r). The charge-current distribution is expanded to first order, yielding the electrostatic Coulomb field of a stationary charge and additional terms that contribute to the potential vector. Ultimately, the final equation for the potential vector is A(t,x) = (μ₀/4π)(ṗ(t-r/c)/r). This analysis provides insights into the behavior of oscillating dipoles in electromagnetic fields.
Salmone
Messages
101
Reaction score
13
In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis## where the dipole is oscillating, ##I_0## is the current (##I(t)=I_0cos(\omega t)##), ##d## is the distance between the charges of the dipole and ##r## is the distance between the origin of the system and the point where I want to calculate the potential vector. Let ##\vec{p}=\hat{k}qd=\frac{\hat{k}dI_0}{\omega}sin(\omega t)## be the dipole moment, it is possible to rewrite the potential vector as ##\vec{A}=\frac{\mu_0}{4\pi}\frac{\vec{\dot p(t-r/c)}}{r}## where ##\vec{\dot p}## is the derivative with respect to time.
 
Physics news on Phys.org
You can start with the source of a point charge,
$$\rho(t,\vec{x})=q \delta^{(3)}[\vec{x}-\vec{y}(t)], \quad \vec{j}(t,\vec{x})= q \dot{\vec{y}}(t) \delta^{(3)}[\vec{x}-\vec{y}(t)],$$
where ##\vec{y}(t)## is the trajectory of the charge.

Now we assume that
$$\vec{y}(t)=\vec{d} \sin(\omega t).$$
For ##r=|\vec{x}|\gg |\vec{d}|## we can expand the charge-current distribution up to first order in ##\vec{d}##,
$$\rho(t,\vec{x})=q \delta^{(3)}(\vec{x}) - q \vec{y}(t) \cdot \vec{\nabla} \delta^{(3)}(\vec{x}) + \mathcal{O}(\vec{d}^2), \quad \vec{j}(t,\vec{x})=q \dot{\vec{y}}(t) \delta^{(3)}(\vec{x}) + \mathcal{O}(\vec{d}^2).$$
From the first term of ##\rho## (of order ##\mathcal{O}(d^0)##) you get the electrostatic Coulomb field of a charge at rest in the origin (which you can easily verify using the retarded potential too).

For the terms of order ##\mathcal{O}(d)## you get for ##\vec{A}## (in SI units)
$$\vec{A}(t,\vec{x})=\frac{\mu_0}{4 \pi} \int_{\mathbb{R}^3} \mathrm{d}^3 x' \vec{j}(t-|\vec{x}-\vec{x}'|/c,\vec{x}') \frac{1}{|\vec{x}-\vec{x}'|}=\frac{\mu_0 q \omega \vec{d}}{4 \pi} \int_{\mathbb{R}^3} \mathrm{d}^3 \vec{x}' \cos[\omega (t-|\vec{x}-\vec{x}'|/c] \frac{\delta^{(3)}(\vec{x}')}{|\vec{x}-\vec{x}'|} = \frac{\mu_0 q \omega \vec{d}}{4 \pi r} \cos[\omega (t-r/c)].$$
With ##I_0=q \omega## that's the solution you are looking for.

The final equation, of course, must read
$$\vec{A}(t),\vec{x})=\frac{\mu_0}{4 \pi} \frac{\dot{\vec{P}}(t-r/c)}{r}.$$
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top