The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI units for electric dipole moment are coulomb-meter (C⋅m); however, a commonly used unit in atomic physics and chemistry is the debye (D).
Theoretically, an electric dipole is defined by the first-order term of the multipole expansion; it consists of two equal and opposite charges that are infinitesimally close together, although real dipoles have separated charge.
If I have two separated and non-interacting molecules with different constants polarizabilities ##\alpha_1## and ##\alpha_2## and I send an EM field of frequency ##\omega## first on the molecule no.##1## and then on the molecule no.##2## so that the two molecules will have a dipole moment...
If I want to calculate the dipole moment of a dielectric cylinder of uniform polarization perpendicular to its axis, I could multiply the polarization by the volume of the cylinder, which is okay. But another method is to consider the cylinder to be a superposition of two cylinders of equal and...
In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis##...
In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis##...
i recently read about the stern-gerlach experiment and found out that they did it in the first place to verify the principle of the "space quantization " introduced by Bohr , and they thought they did detect the quantization of the orbital angular momentum of ( L = 1 , m = 1,-1 ) neglecting the...
I have to estimate the electric dipole moment of an NV center in units of Am. I know that for a regular electric dipole moment it can be estimated using p=ed. With e=1.6*10^-19 and d=0.1 nm (interatomic distance), this however is in units Cm. I don't know how to go to Am
Summary:: What if you were calculating the voltage potential for a dipole, but underwater?
I'm making a predictive model (in R programming) for the voltage potential at any point around a dipole. I need to be able to change parameters, one being the k constant.
V=( kpcosѲ)/(r^2).
Where V is...
How to prove the dipole moment of an isolated quantum system in isotropic space is identically equal to zero, unless there exists an accidental degeneracy.
Thanks in advance
Homework Statement
A plane z=0 is charged with density, changing periodically according to the law:
σ = σ° sin(αx) sin (βy)
where, σ°, α and β are constants.
We have to find the potential of this system of charges.
Homework Equations
The Attempt at a Solution
[/B]
I...
Homework Statement
This is from Griffith's Introduction to Electrodynamics, where the book is deriving the magnetic dipole moment from multipole expansion of the vector potential
The vector potential of a current loop can be written as
$$\mathbf{A(r)}=\frac{\mu_0 I}{4\pi} \left[ \frac{1}{r}...
The sources I've looked at claim the magnetic field is present because there are still some electrons in the neutron star.
Here is how I understand their reasoning: a star's radius significantly decreases when it collapses into a neutron star, ultimately decreasing its moment of inertia. In...
The think is that I would like to create a magnetic trap "minimum of magnetic potential energy in all 3 directions of space" using a distribution of magnetic dipoles as a field generator.
In other words, I would like to know if setting in some way some magnetic dipoles is possible to create a...
I was watching a video explaining how microwave ovens work when I found that there is a difference between my physics textbook and online images of the electric dipole moment of the water molecule, as well as the one shown in the video.
Why do they differ?
Lets suppose that I have a magnetic dipole moment at (0,0,0) pointing to the Z axis, and in the position (X,Y,Z) in the space, I have a Hydrogen atom, I would like to know the exact interaction between the magnetic field created by the magnetic dipole moment in (0,0,0) and the magnetic fields of...
Homework Statement
We have an electric dipole with moment P=2*[10][/-5] pointing in x direction. What is the force experieced by dipole at origin when a point charge Q=3*[10][/-4] is located at (0.014 m ,0,0)
Homework Equations
1. [E][/dipole]=(1/4π[ε][/0])(2p/r3)
2. p=qs
3. F=qE
4. τ=pEsinϑ...
Homework Statement
I am given this picture
and I know that |q1|=2nC, |q2|=5nC, d=1mm
I need to first find the total dipole moment of the system. Then I need to find an equation that represents the electric potential due to this net dipole moment for all (everywhere)
Homework Equations
p=qd...
Homework Statement
Find the force of attraction between 2 magnetic dipoles a distance r apart. Both dipoles point to the right.
Homework Equations
The Attempt at a Solution
All I need help with is figuring out how to determine if the force is attractive or repulsive between the 2 dipole...
Is there any interaction between a perfect magnetic dipole and a perfect electric dipole, both at rest?
What abut real dipoles?
What does QED say about this?
I was going through the chapter Chemical Bonding in one of the books and found something about orbital dipole due to lone pairs.
In each diagram the orbital dipole due to lone pair was directed from the central atom to the end of the hybridized orbital (lone pair).
Why is that so?
Homework Statement
To derive Potential Energy for dipole p in Electric Field E.
2. Homework Equations
Potential Energy is the work done by the external agent in turning the angle of the dipole from the U=0 position to another position against the influence of the electric field applied...
Hi everyone,
I am interested how is polarized light absorbed by a molecule or an atom. Unfortunately, I come to a problem in the derivation where a complex vector in a real space appears. This is something I never seen before and I do not know how to interpret it. Therefore I would like to ask...
Can someone explain how to determine if a compound has a dipole moment and how to determine how big or small it is (possibly numerical value)? I have a final tomorrow and I've looked this up on multiple website and cannot find any good explanation.
Why does hydroquinone possesses non zero dipole moment? The OH groups present at para positions on the benzene ring should cancel the effect of each other...if there is a plane change then exactly in which cases molecules do change planes?