Karl Coryat said:
I have two clocks far from a massive object, relative to which I am at rest, and I let go of one of the clocks. I let it free-fall for 186,000 miles, and then I observe both clocks. Is the falling clock observed to be one second behind my local clock?
First, what do you mean by "observed"? I assume, from the fact that one second appears in your question, that by "observed" you mean that you see light coming from the falling clock, carrying an image of its reading, and you compare that image with the reading of your local clock at the same instant that you see the image.
Second, how are you measuring the distance the free-falling clock travels? Evidently you don't intend to use the reading on the falling clock in the image you see, compared with the reading on your local clock, as a measure of that distance, since your question treats the distance as independent of the observed clock readings. The simplest assumption is that there is another observer, also at rest relative to the massive object, who is below you, and you have extended a very long ruler between you and him, with the ruler at rest relative to both of you, and have verified that the distance between you according to that ruler is 186,000 miles. The image of the falling clock that you would compare with your local clock's reading is then the image of that clock that is emitted just as the clock passes the other observer.
Given those assumptions, the answer to your question is, in general, no, the difference in clock readings will not be exactly one second; it will be longer. How much longer depends on how close you are to the massive object and how massive it is; the closer and the more massive, the longer it will be.
Karl Coryat said:
As I understand it, the sum of gravitational and potential energy of an orbiting body is invariant.
What is "gravitational" energy? Usually that term means the same thing as potential energy. I think you mean the sum of
kinetic and potential energy is a constant of the motion; this is true for an object in a free-fall orbit, yes, but only in a particular set of coordinates. See below.
Karl Coryat said:
In the Sun's rest frame for example, this sum could be measured as a certain number of joules; however in a different frame, free-falling alongside the orbiting body, the sum would be much smaller or zero, but similarly invariant regardless.
First, that's not what "invariant" means. "Invariant" means the quantity does not change when you change coordinates. The sum of kinetic and potential energy is, as I said above, a constant of the motion--in other words, it doesn't change as the body moves. But if you define this constant as "the sum of kinetic and potential energy", then it is
not invariant, because it changes when you change coordinates.
Actually, an even stronger statement is true: except in a particular set of coordinates, the "potential energy" of the object isn't well-defined at all. The
kinetic energy is always well-defined, and changes as you change coordinates, as you note. But the potential energy is only well-defined in coordinates in which the central body (the Sun, for example) is at rest. (Strictly speaking, the central body also has to be the only body with significant gravity in the system, which is not true of the Sun. But we can pass over that complication for now.) So there is no way to define a "sum of kinetic and potential energy" that is invariant under general coordinate transformations. (But see below.)
Karl Coryat said:
Is this considered an example of gauge invariance?
No. Invariance under general coordinate transformations can be considered a form of gauge invariance, but that kind of invariance is not what you were describing. See above.
It is true that there
is an invariant that can be defined for a body in a free-fall orbit about a central mass (strictly speaking, only in the idealized case of a single central mass with no other gravitating bodies in the system, as mentioned above). But this invariant is not defined as "the sum of kinetic and potential energy"; it just happens to equal that sum in coordinates in which the central body is at rest. The actual invariant is usually called "energy at infinity", and its definition is somewhat technical, but I'll give it: it is the inner product ##P_a T^a## of the object's 4-momentum ##P_a## with the timelike Killing vector field ##T^a## of the spacetime. (The latter vector field is only present in systems with time translation symmetry, which is where the restriction to systems with a single central mass comes from.) If you're not familiar with the concepts I just used, it's worth taking some time to learn about them; I would recommend Sean Carroll's online lecture notes on GR as a reference:
https://arxiv.org/abs/gr-qc/9712019