Spaceship taking circular turn

AI Thread Summary
To solve the problem of a spaceship negotiating a circular turn, first convert the radius and speed into meters and seconds. The magnitude of angular velocity can be calculated using the formula ω = v/r, where v is the speed and r is the radius. Radial acceleration can be determined using the formula a_r = v²/r, while tangential acceleration is zero since the speed remains constant. Basic equations of curvilinear motion are essential for these calculations. Understanding these principles will enable accurate computation of the required values.
adp5025
Messages
14
Reaction score
0
I tried using equations useing different methods of solving this problem but no cigar.

If anyone can help me just to get started that would be grand.

Thanks

A spaceship negotiates a circular turn of radius 3890 km at a speed of 33860 km/h.

(a) What is the magnitude of the angular velocity?
rad/s
(b) What is the magnitude of the radial acceleration?
m/s2
(c) What is the magnitude of the tangential acceleration?
m/s2
 
Physics news on Phys.org
First, convert given info to correct units; meters and seconds.
Second, use your equations for curviliear motion, they are quite basic.
Third, the answer to c should be obvious, since the problem states that the speed is not changing...
 
what equation would that be, i don't know one that's called curviliear motion equation.

i know these equations:
angular position
angular velcoity - i would guess to use this but there's not rad given.
angular acceleration
 
adp5025 said:
angular velcoity - i would guess to use this but there's not rad given.

Angular velocity can also be represented as;

\omega = \frac{v}{r}

Regards
-Hoot
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top