I Special Theory of Relativity & Conservation of Mass

Sonuz
Messages
2
Reaction score
1
Does the law of conservation of mass fail to meet the first postulate of the special theory of relativity(the laws of physics are the same in all inertial frames of reference)?
 
Physics news on Phys.org
Depends how you're defining "mass".
 
As with your last thread, if you explain your thinking a bit more we'll be able to give more helpful answers.
 
Sonuz said:
Does the law of conservation of mass fail to meet the first postulate of the special theory of relativity(the laws of physics are the same in all inertial frames of reference)?
Conservation means does not change over time. What the first postulate would say is:

If mass is conserved in one inertial reference frame, then it is conserved in them all.
 
  • Like
Likes robphy, vanhees71 and Ibix
Sonuz said:
Does the law of conservation of mass fail to meet the first postulate of the special theory of relativity(the laws of physics are the same in all inertial frames of reference)?
No. Why do you think it might conflict?
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top