I Special Theory of Relativity & Conservation of Mass

Sonuz
Messages
2
Reaction score
1
Does the law of conservation of mass fail to meet the first postulate of the special theory of relativity(the laws of physics are the same in all inertial frames of reference)?
 
Physics news on Phys.org
Depends how you're defining "mass".
 
As with your last thread, if you explain your thinking a bit more we'll be able to give more helpful answers.
 
Sonuz said:
Does the law of conservation of mass fail to meet the first postulate of the special theory of relativity(the laws of physics are the same in all inertial frames of reference)?
Conservation means does not change over time. What the first postulate would say is:

If mass is conserved in one inertial reference frame, then it is conserved in them all.
 
  • Like
Likes robphy, vanhees71 and Ibix
Sonuz said:
Does the law of conservation of mass fail to meet the first postulate of the special theory of relativity(the laws of physics are the same in all inertial frames of reference)?
No. Why do you think it might conflict?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top