Specific Heat Capacity of a metal bar placed into water

AI Thread Summary
The discussion focuses on calculating the specific heat capacity (shc) of a metal bar placed in water. The thermal energy gained by the water is calculated as 11035.2 J, using the equation Eth = mCΔT. Participants express uncertainty about how this energy relates to the cooling of the metal. The conversation emphasizes the need to establish an equation for the metal's temperature change and to define its specific heat as an unknown variable. The goal is to accurately determine the metal's specific heat based on the provided data.
lxhull
Messages
4
Reaction score
1
Homework Statement
A thermos bottle contains 0.150 kg of water at 4.1 °C. When 9.00 x 10^-2 kg of a metal, initially at 96.2 °C, is put into the water, the temperature of the water rises to 21.7 °C. Calculate the specific heat of the metal
Relevant Equations
C= Eth/mT
Previously solved thermal energy gained by water as
Eth= 0.15(4180)(17.6) = 11035.2 J
Not sure if its relevant
 
Physics news on Phys.org
lxhull said:
Not sure if its relevant
It is. How does it relate to the cooling of the metal?
 
haruspex said:
It is. How does it relate to the cooling of the metal?
That's the problem, I don't know. It seems like it can't be part of the equation for the metal's shc because it used the waters shc, so I can't figure it out.
 
lxhull said:
That's the problem, I don't know. It seems like it can't be part of the equation for the metal's shc because it used the waters shc, so I can't figure it out.
Just write the corresponding equation for the metal's change in temperature. Create an unknown for the metal's s.h.
 
lxhull said:
Homework Statement:: A thermos bottle contains 0.150 kg of water at 4.1 °C. When 9.00 x 10^-2 kg of a metal, initially at 96.2 °C, is put into the water, the temperature of the water rises to 21.7 °C. Calculate the specific heat of the metal
Relevant Equations:: C= Eth/mT

Previously solved thermal energy gained by water as
Eth= 0.15(4180)(17.6) = 11035.2 J
Not sure if its relevant
Corrrct so far.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...

Similar threads

Replies
17
Views
5K
Replies
3
Views
4K
Replies
3
Views
3K
Replies
6
Views
2K
Replies
6
Views
3K
Replies
3
Views
1K
Back
Top