Why is an electric arc needed for spectroscopy of clear gases?

Click For Summary
SUMMARY

The discussion centers on the necessity of using an electric arc for spectroscopy of clear gases like hydrogen and helium. An electric arc excites electrons to higher energy levels, enabling the observation of sharp spectral lines, such as the Balmer series, when the emitted light is analyzed through a prism. Ambient light lacks sufficient energy to excite electrons to the necessary higher orbitals, resulting in hydrogen gas appearing colorless under normal conditions. The low probability of photon absorption and emission further explains the inefficacy of ambient light for this purpose.

PREREQUISITES
  • Understanding of atomic orbitals and electron transitions
  • Familiarity with the Balmer series in hydrogen
  • Knowledge of spectroscopy techniques and equipment
  • Basic principles of photon absorption and emission
NEXT STEPS
  • Research the principles of electric arc spectroscopy
  • Study the Balmer series and its significance in atomic physics
  • Explore the concept of absorption spectra and their applications
  • Investigate the role of gas density in light absorption and emission
USEFUL FOR

Students and professionals in physics, chemists specializing in spectroscopy, and anyone interested in the behavior of gases under various light conditions will benefit from this discussion.

Sophrosyne
Messages
128
Reaction score
21
To obtain spectroscopy on a gas like hydrogen or helium, an electric arc is passed through a container of the material, and then the emitted light is viewed through a prism which breaks it up into its component wavelengths. There are sharp lines which are formed, caused by excitation of the electrons in the atoms to the respective higher level orbitals corresponding to the wavelength of absorbed light, emitting that light when they drop back down. Many of these occur in the visible range of the electromagnetic spectrum (eg, the Balmer series in the hydrogen atom).

My question is: why do you need an electric arc to get the electrons to do this? The wavelengths of photons in the Balmer series are present in plentiful quantities in regular ambient light. They should be enough to cause excitation of the electrons to their higher energy levels, shouldn't they? And then as the electrons drop back down they should be emitting those light wavelengths. That is how other colored objects in our world work. But hydrogen gas under ambient light conditions is colorless. Why? Is it because it absorbs and emits the photons instantaneously? Or is there something else going on?

Thanks.
 
Last edited:
Physics news on Phys.org
There may be other reasons why this doesn't work, but for the Balmer series of hydrogen, it is a transition from a higher level down to n=2. In order to populate n=2, you need a photon energy of ## E=13.6(\frac{1}{1^2}-\frac{1}{2^2}) ## eV, which is about 10 eV and is in the lower end (shorter wavelength\higher energy region) of the UV. The n=2 simply wouldn't get populated by a white light source, and higher n's would be even less populated.
 
Hmm... Well, the Balmer series is the result of electrons falling from ##n ≥ 3## to ##n=2##. My best guess is that most of the gas in a container of hydrogen at STP exists in their ground states, so you need more energy than visible light to get them up to a shell of 3 or more. That's just a guess though. Don't take my word for it.
 
  • Like
Likes   Reactions: Charles Link
Drakkith said:
Hmm... Well, the Balmer series is the result of electrons falling from ##n ≥ 3## to ##n=2##. My best guess is that most of the gas in a container of hydrogen at STP exists in their ground states, so you need more energy than visible light to get them up to a shell of 3 or more. That's just a guess though. Don't take my word for it.

Oh I see. I will look into this some more, but this explanation does make a lot of sense.
 
Sophrosyne said:
To obtain spectroscopy on a gas like hydrogen or helium, an electric arc is passed through a container of the material, and then the emitted light is viewed through a prism which breaks it up into its component wavelengths. There are sharp lines which are formed, caused by excitation of the electrons in the atoms to the respective higher level orbitals corresponding to the wavelength of absorbed light, emitting that light when they drop back down. Many of these occur in the visible range of the electromagnetic spectrum (eg, the Balmer series in the hydrogen atom).

My question is: why do you need an electric arc to get the electrons to do this? The wavelengths of photons in the Balmer series are present in plentiful quantities in regular ambient light. They should be enough to cause excitation of the electrons to their higher energy levels, shouldn't they? And then as the electrons drop back down they should be emitting those light wavelengths. That is how other colored objects in our world work. But hydrogen gas under ambient light conditions is colorless. Why? Is it because it absorbs and emits the photons instantaneously? Or is there something else going on?

Thanks.

The problem here is that (i) photon absorption mechanism is not as often as the usual gas excitation using either an electric arc or discharge tube and (ii) even if it happens, due to such low occurrences and the scattered emission, you are less likely to see this light.

Getting a photon of just the right wavelength to just hit and excite an atom, and then to get the emitted photon during decay to hit your eye so that you can observe the light, is not a very probable scenario. Even if there is an absorption, it doesn't mean that you get to see the light when it decays back down. This is why we have "absorption spectra" where there are "missing lines" in the spectra corresponding to the absorbed transition, and the light being absorbed was scattered in a different direction than the incoming one.

The fact that the gas is of low density, and is "transparent", already indicates that the probability of light having a significant absorption cross-section with the gas atom/molecules is already very, very low.

Zz.
 
  • Like
Likes   Reactions: dlgoff and Charles Link

Similar threads

  • · Replies 23 ·
Replies
23
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K