Speed of a hanging rope sliding on a nail (using energy conservation)

Click For Summary

Homework Help Overview

The discussion revolves around the mechanics of a hanging rope sliding over a nail, specifically using energy conservation principles. Participants explore the relationship between gravitational potential energy and kinetic energy as the rope moves, while also considering the implications of different reference points for height.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to apply both Newton's second law and conservation of mechanical energy to analyze the problem. They express confusion regarding the correct formulation of energy relations and the treatment of potential energy at different heights.
  • Some participants suggest simplifying the problem by taking the height of the nail as the zero reference point for gravitational potential energy.
  • Questions arise about the initial heights of the mass centers of the rope segments and the consistency of the gravitational potential energy expressions.

Discussion Status

Participants are actively engaging in clarifying the energy expressions and checking for consistency in their formulations. There is a recognition of the need to correctly account for the mass distribution and height of the rope segments as they slide over the nail. Some guidance has been offered regarding simplifying assumptions, but no consensus has been reached on the correct approach to the energy conservation aspect.

Contextual Notes

There is an ongoing discussion about the assumptions related to the height reference point and the implications of the rope's configuration as it moves. Participants are also considering the effects of the rope's mass distribution on the gravitational potential energy calculations.

TheGreatDeadOne
Messages
22
Reaction score
0
Homework Statement
A rope of full length 2l hangs balanced on a smooth nail, length l on each side. A small impulse causes the rope starts to slide over the nail. Get the string speed module at the moment when it hangs with length x on one side and 2l - x on the other. Disregard the nail dimensions and assume x> l.
Relevant Equations
.
I solved this problem easily using Newton's second law, but I had problems trying to use mechanical energy conservation to solve it.
How I solved using Newton's second law:
##\text{(part of the rope that is on the left)}\, m_1=x\rho g,\, \text{(part of the rope that is on the right)}\, m_2=(2l-x)\rho ##
$$ F=x\rho g - (2l-x)\rho g=2(x-l)g\rho $$
$$ \Rightarrow \frac{dF}{dt}=m\frac{dv}{dt} =2l\rho\frac{dv}{dt} $$
Thus,
$$\frac{dv}{dt}=\frac{x-l}{l}g, \quad \mbox{by the chain rule:} \quad \frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}$$
Replacing and integrating:
$$\int s\frac{dv}{dx}=\int \frac{x-l}{l}g \, dx \Rightarrow\frac{g}{l}\frac{(x-l)^2}{2}=\frac{v^2}{2}+C$$

For ##x=l\, \rightarrow v=0##, then C=0, so:

$$\boxed {v=(x-l)\sqrt{\frac{g}{l}} }$$

Now for conservation of energy I had trouble writing the relations. What I've tried to do so far:
(Assuming the nail is at a distance h from the ground, and h>l)

For the left side \begin{align}
E_{iL}& = l\rho g (h-l) \\
E_{fL}&=(x)\rho g (h-l-x) +(x)\rho \frac{v^2}{2}
\end{align}

For the right side \begin{align}
E_{iR}& = l\rho g (h-l) \\
E_{fR}&=(2l-x)\rho g (h-2l+x) +(2l-x)\rho \frac{v^2}{2}
\end{align}

And as I wrote above, it is very wrong. The problems I'm having are as follows:

1) Should I consider when the rope reaches its length and falls to the ground?
2) Should I consider potential gravitational energy when the string is in balance or not?
 
Physics news on Phys.org
You are making extra work for yourself by worrying about where the ground is. Much simpler to take the height of the nail as the zero height.
 
  • Like
Likes   Reactions: Lnewqban
haruspex said:
You are making extra work for yourself by worrying about where the ground is. Much simpler to take the height of the nail as the zero height.
You're right! It's as simple as that. But, the logic used to express the initial and final energies do you think is right?
 
TheGreatDeadOne said:
You're right! It's as simple as that. But, the logic used to express the initial and final energies do you think is right?
We can take the equations you wrote and substitute h=0.
In (1) and (3), what is the initial height of the mass centre of each side?
In (2), you have a factor x(l-x) in the GPE term, but it is (l-x)2 in (4). Do you see the asymmetry? Note that substituting x=l and v=0 in (2) and (4) should produce (1) and (3).
 
  • Like
Likes   Reactions: TheGreatDeadOne
haruspex said:
We can take the equations you wrote and substitute h=0.
In (1) and (3), what is the initial height of the mass centre of each side?
In (2), you have a factor x(l-x) in the GPE term, but it is (l-x)2 in (4). Do you see the asymmetry? Note that substituting x=l and v=0 in (2) and (4) should produce (1) and (3).
"In (1) and (3), what is the initial height of the mass center of each side?"

I was trying to calculate from the end of the string, but really from the center of mass it seems a lot simpler.

"In (2), you have a factor x (l-x) in the GPE term, but it is (l-x)^2 in (4). Do you see the asymmetry? Note that substituting x = l and v = 0 in (2) and (4) should produce (1) and (3) "

I saw this, I was trying to describe that when one side of the rope slips, the length of the other side decreases and the mass of rope on that side decreases too.
Thank you again!
 
Not sure that you got either of the points I was making.
TheGreatDeadOne said:
I was trying to calculate from the end of the string, but really from the center of mass it seems a lot simpler.
If we take the nail as height zero, what is the initial height of the mass centres of the two halves of the string? So what are their initial GPEs?
TheGreatDeadOne said:
I was trying to describe that when one side of the rope slips, the length of the other side decreases and the mass of rope on that side decreases too.
Your two expressions for the GPEs when one string has length x are inconsistent. Either (2) or (4) must be wrong.
After you have got equations (1) and (3) right, check (2) and (4) by plugging in x=l and v=0. If (2) and (4) are right then the resulting equations should be (1) and (3).
 
  • Like
Likes   Reactions: TheGreatDeadOne
It is interesting to calculate the reaction force from the nail to the rope. The loop of the rope can detach off the nail and jump
 
  • Like
Likes   Reactions: TheGreatDeadOne

Similar threads

  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
823
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K