Undergrad Spinor Representation of Lorentz Transformations: Solving the Puzzle

Click For Summary
The discussion focuses on the transformation of spinors under Lorentz transformations, specifically how the spinor ##\psi## transforms as $$\psi\rightarrow S(\Lambda)\psi$$ with $$S(\Lambda)$$ defined in terms of the generators $$\Sigma^{\mu\nu}$$. Participants express confusion about the appearance of an additional factor of ##i## in the spatial rotation terms of the left-handed and right-handed transformations. Clarifications are provided regarding the definitions of the parameters ##\beta^{k}## and ##\theta^{k}##, which relate to boosts and rotations, respectively, and the choice of signs is noted as somewhat arbitrary for convenience. The conversation emphasizes the importance of correctly applying the identities involving the gamma matrices and the Pauli matrices in deriving the transformation expressions. Overall, the thread serves to clarify the mathematical intricacies involved in spinor transformations in the context of quantum field theory.
Frank Castle
Messages
579
Reaction score
23
I've been working my way through Peskin and Schroeder and am currently on the sub-section about how spinors transform under Lorentz transformation. As I understand it, under a Lorentz transformation, a spinor ##\psi## transforms as $$\psi\rightarrow S(\Lambda)\psi$$ where $$S(\Lambda)=\exp\left(-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu}\right)$$ with $$\Sigma^{\mu\nu}=\frac{i}{4}\left[\gamma^{\mu},\,\gamma^{\nu}\right]=-\Sigma^{\nu\mu}$$ Then, in the Weyl representation we have that $$\Sigma^{0i}=-\frac{i}{2}\left(\begin{matrix}\sigma^{i}&&0\\ 0&&-\sigma^{i}\end{matrix}\right)$$ and $$\Sigma^{ij}=\frac{i}{2}\varepsilon^{ijk}\left(\begin{matrix}\sigma^{k}&&0\\ 0&&\sigma^{k}\end{matrix}\right)$$ Given this, what confuses me is how one ends up with the following left-handed and right-handed transformations: $$S(\Lambda)_{L}=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{2}+i\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right) \\ \\ S(\Lambda)_{R}=\exp\left(\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{2}+i\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right)$$ Where does the additional ##i## come from in the spatial rotations term?

I have read from other sources, that the parameters ##\omega_{\mu\nu}## are defined such that ##\omega_{0i}=\beta_{i}## and ##\omega_{ij}=\varepsilon_{ijk}\theta^{k}##, which are the boost and rotation parameters respectively. Given these, however, I can't arrive at the above expressions. For example, for ##S(\Lambda)_{L}## I obtain
$$S(\Lambda)_{L}=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{4}+\varepsilon_{ijk}\varepsilon^{ijl}\frac{\theta^{k}\sigma^{l}}{4}\right)=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{4}+\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right)$$ where I have used that ##\varepsilon_{ijk}\varepsilon^{ijl}=2\delta_{kl}##.

Would someone be able to explain this to me as I'm really stuck on this point at the moment.
 
Physics news on Phys.org
The rotations are represented by the usual SU(2) operations on the left and right-handed parts of the Dirac operator. Thus, there's a factor ##\mathrm{i}## too much in your definition of ##\Sigma^{ij}##!
 
Frank Castle said:
Where does the additional ##i## come from in the spatial rotations term?
Would someone be able to explain this to me as I'm really stuck on this point at the moment.

Using the antisymmetry of the Lorentz parameters, you can write -\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \frac{1}{4} \omega_{\mu\nu} \gamma^{\mu}\gamma^{\nu} . Expanding the summation leads to -\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \frac{1}{4}\omega_{0k}\gamma^{0}\gamma^{k} + \frac{1}{4}\omega_{k0}\gamma^{k}\gamma^{0} + \frac{1}{4}\omega_{ij}\gamma^{i}\gamma^{j} . The first two terms are equal, because \omega_{k0}=-\omega_{0k} and \gamma^{k}\gamma^{0} = - \gamma^{0}\gamma^{k}. Thus

-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \frac{1}{2} \omega_{0k}\gamma^{0}\gamma^{k} + \frac{1}{4} \omega_{ij}\gamma^{i}\gamma^{j} . \ \ \ (1)

Now, in the chiral representation we have

\gamma^{0}\gamma^{k} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{k} \\ - \sigma^{k} & 0 \end{pmatrix} = \begin{pmatrix} - \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix} ,

\gamma^{i}\gamma^{j} = \begin{pmatrix} 0 & \sigma^{i} \\ - \sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{j} \\ - \sigma^{j} & 0 \end{pmatrix} = - i \epsilon^{ijk} \begin{pmatrix} \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix} .

Substituting these expressions in (1), you get

-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \omega_{0k} \begin{pmatrix} - \frac{\sigma^{k}}{2} & 0 \\ 0 & \frac{\sigma^{k}}{2} \end{pmatrix} + i \left( - \frac{1}{2}\epsilon^{ijk}\omega_{ij} \right) \begin{pmatrix} \frac{\sigma^{k}}{2} & 0 \\ 0 & \frac{\sigma^{k}}{2} \end{pmatrix} .

Now, if you define the parameters \beta^{k} = \omega_{0k} and \theta^{k} = - \frac{1}{2}\epsilon^{ijk}\omega_{ij}, you get

-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \begin{pmatrix} \frac{1}{2}\left( - \vec{\beta} + i \vec{\theta} \right) \cdot \vec{\sigma} & 0 \\ 0 & \frac{1}{2}\left( \vec{\beta} + i \vec{\theta} \right) \cdot \vec{\sigma} \end{pmatrix} .
 
  • Like
Likes vanhees71
samalkhaiat said:
Using the antisymmetry of the Lorentz parameters, you can write -\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \frac{1}{4} \omega_{\mu\nu} \gamma^{\mu}\gamma^{\nu} . Expanding the summation leads to -\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \frac{1}{4}\omega_{0k}\gamma^{0}\gamma^{k} + \frac{1}{4}\omega_{k0}\gamma^{k}\gamma^{0} + \frac{1}{4}\omega_{ij}\gamma^{i}\gamma^{j} . The first two terms are equal, because \omega_{k0}=-\omega_{0k} and \gamma^{k}\gamma^{0} = - \gamma^{0}\gamma^{k}. Thus

-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \frac{1}{2} \omega_{0k}\gamma^{0}\gamma^{k} + \frac{1}{4} \omega_{ij}\gamma^{i}\gamma^{j} . \ \ \ (1)

Now, in the chiral representation we have

\gamma^{0}\gamma^{k} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{k} \\ - \sigma^{k} & 0 \end{pmatrix} = \begin{pmatrix} - \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix} ,

\gamma^{i}\gamma^{j} = \begin{pmatrix} 0 & \sigma^{i} \\ - \sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{j} \\ - \sigma^{j} & 0 \end{pmatrix} = - i \epsilon^{ijk} \begin{pmatrix} \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix} .

Substituting these expressions in (1), you get

-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \omega_{0k} \begin{pmatrix} - \frac{\sigma^{k}}{2} & 0 \\ 0 & \frac{\sigma^{k}}{2} \end{pmatrix} + i \left( - \frac{1}{2}\epsilon^{ijk}\omega_{ij} \right) \begin{pmatrix} \frac{\sigma^{k}}{2} & 0 \\ 0 & \frac{\sigma^{k}}{2} \end{pmatrix} .

Now, if you define the parameters \beta^{k} = \omega_{0k} and \theta^{k} = - \frac{1}{2}\epsilon^{ijk}\omega_{ij}, you get

-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu} = \begin{pmatrix} \frac{1}{2}\left( - \vec{\beta} + i \vec{\theta} \right) \cdot \vec{\sigma} & 0 \\ 0 & \frac{1}{2}\left( \vec{\beta} + i \vec{\theta} \right) \cdot \vec{\sigma} \end{pmatrix} .

Great answer, thanks.
There's just a couple of things that I'm not quite sure about, how did you get \gamma^{i}\gamma^{j} = \begin{pmatrix} 0 & \sigma^{i} \\ - \sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{j} \\ - \sigma^{j} & 0 \end{pmatrix} = - i \epsilon^{ijk} \begin{pmatrix} \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix} . Naively, I get $$\gamma^{i}\gamma^{j} = \begin{pmatrix} 0 & \sigma^{i} \\ - \sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{j} \\ - \sigma^{j} & 0 \end{pmatrix} = \begin{pmatrix} -\sigma^{i}\sigma^{j} & 0\\ 0 & -\sigma^{i}\sigma^{j} \end{pmatrix}$$ If I then use ##\left[\sigma^{i},\,\sigma^{j}\right]=2i\varepsilon^{ijk}\sigma^{k}## then I'll just end up with ##\sigma^{i}\sigma^{j}=\sigma^{j}\sigma^{i}+2i\varepsilon^{ijk}\sigma^{k}##?! Are you simply using that $$\omega_{ij}\gamma^{i}\gamma^{j}=\frac{1}{2}\omega_{ij}\left[\gamma^{i},\,\gamma^{j}\right]$$ such that in the Chiral representation $$\omega_{ij}\gamma^{i}\gamma^{j}=\omega_{ij}\begin{pmatrix} -\left[\sigma^{i},\,\sigma^{j}\right] & 0\\ 0 & -\left[\sigma^{i},\,\sigma^{j}\right] \end{pmatrix}=-2i\omega_{ij}\varepsilon^{ijk}\begin{pmatrix} \sigma^{k} & 0\\ 0 & \sigma^{k} \end{pmatrix}$$

Also, do we simple choose that \theta^{k} = - \frac{1}{2}\epsilon^{ijk}\omega_{ij} for convenience (absorbing the minus sign)?
 
vanhees71 said:
The rotations are represented by the usual SU(2) operations on the left and right-handed parts of the Dirac operator. Thus, there's a factor ##\mathrm{i}## too much in your definition of ##\Sigma^{ij}##!

Good point, I'd forgotten about the ##i## already in the definition of ##\Sigma^{\mu\nu}##!
Also, are the choices of for the forms of the parameters somewhat arbitrary? For example, does one choose ##\theta^{k}=-\frac{1}{2}\varepsilon^{ijk}\omega_{ij}## purely for convenience to absorb the extra factor of ##1/2## floating around?!
 
Frank Castle said:
Naively, I get $$\gamma^{i}\gamma^{j} = \begin{pmatrix} 0 & \sigma^{i} \\ - \sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{j} \\ - \sigma^{j} & 0 \end{pmatrix} = \begin{pmatrix} -\sigma^{i}\sigma^{j} & 0\\ 0 & -\sigma^{i}\sigma^{j} \end{pmatrix}$$
So, \omega_{ij}\gamma^{i}\gamma^{j} = - \begin{pmatrix} \omega_{ij}\sigma^{i}\sigma^{j} & 0 \\ 0 & \omega_{ij}\sigma^{i}\sigma^{j} \end{pmatrix} .

Now, use the identity \sigma^{i}\sigma^{j} = \delta^{ij} I_{2} + i \epsilon^{ijk}\sigma^{k} together with \omega_{ij}\delta^{ij} = 0.
Remember that this is a rotation in the (ij)-plane, i.e., i \neq j. And, in this case, \sigma^{i}\sigma^{j} = i \epsilon^{ijk}\sigma^{k}.

Also, do we simple choose that \theta^{k} = - \frac{1}{2}\epsilon^{ijk}\omega_{ij} for convenience?

Yes. You can choose any sign for \theta^{k} (and for \beta^{k}). I picked the minus sign so that my results agree with the expressions you wrote for S_{L}(\Lambda) and S_{R}(\Lambda).
 
samalkhaiat said:
So, \omega_{ij}\gamma^{i}\gamma^{j} = - \begin{pmatrix} \omega_{ij}\sigma^{i}\sigma^{j} & 0 \\ 0 & \omega_{ij}\sigma^{i}\sigma^{j} \end{pmatrix} .

Now, use the identity \sigma^{i}\sigma^{j} = \delta^{ij} I_{2} + i \epsilon^{ijk}\sigma^{k} together with \omega_{ij}\delta^{ij} = 0.
Remember that this is a rotation in the (ij)-plane, i.e., i \neq j. And, in this case, \sigma^{i}\sigma^{j} = i \epsilon^{ijk}\sigma^{k}.

Yes. You can choose any sign for \theta^{k} (and for \beta^{k}). I picked the minus sign so that my results agree with the expressions you wrote for S_{L}(\Lambda) and S_{R}(\Lambda).

Ok great, thanks for your help. I assume what I wrote at the end of post #4 is correct?!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K