- #1
Gene Naden
- 321
- 64
I am working through Lessons in Particle Physics by Luis Anchordoqui and Francis Halzen. The link is https://arxiv.org/PS_cache/arxiv/pdf/0906/0906.1271v2.pdf. I am on page 21. Between equations (1.5.53) and (1.5.54), the authors make the following statement:
##S^\dagger ( \Lambda ) = \gamma ^0 S^{-1} ( \Lambda ) \gamma ^0##
Here ##S## is the unitary transformation corresponding to a Lorentz transformation and
##\Lambda## is the Lorentz transformation.
They give the following definition for ##S##:
##S = 1 - \frac{i}{2} \omega_{\mu\nu} \Sigma^{\mu\nu}##
where ##\Sigma^{\mu\nu}## is defined as ##\frac{i}{4} [ \gamma^\mu, \gamma^\nu]##
My first question has to do with ##S^{-1}##: Can I invert ##S## by changing the sign of the ##\omega##?
Second, can I assume that ##(\gamma^\mu)^\dagger = \gamma^\mu##
I see that this is true in the "standard" representation for ##\gamma^\mu##. Is it true in general?
As always, thanks.
##S^\dagger ( \Lambda ) = \gamma ^0 S^{-1} ( \Lambda ) \gamma ^0##
Here ##S## is the unitary transformation corresponding to a Lorentz transformation and
##\Lambda## is the Lorentz transformation.
They give the following definition for ##S##:
##S = 1 - \frac{i}{2} \omega_{\mu\nu} \Sigma^{\mu\nu}##
where ##\Sigma^{\mu\nu}## is defined as ##\frac{i}{4} [ \gamma^\mu, \gamma^\nu]##
My first question has to do with ##S^{-1}##: Can I invert ##S## by changing the sign of the ##\omega##?
Second, can I assume that ##(\gamma^\mu)^\dagger = \gamma^\mu##
I see that this is true in the "standard" representation for ##\gamma^\mu##. Is it true in general?
As always, thanks.