Spiral motion and the centripetal force

Click For Summary
SUMMARY

The discussion centers on the dynamics of a particle in spiral motion defined by the equation r(t) = e^t, with a constant angular velocity. Participants clarify that while there is an inward centripetal force acting on the particle, there is also a need to account for the outward force due to the increasing distance from the origin. The radial acceleration is expressed as r'' - θ'²r, emphasizing the complexity of forces in polar coordinates. The conversation highlights the importance of understanding radial acceleration and its implications in non-linear motion.

PREREQUISITES
  • Understanding of polar coordinates and their applications in physics
  • Knowledge of centripetal force and radial acceleration concepts
  • Familiarity with Lagrangian mechanics and force equations
  • Basic calculus, particularly derivatives and their physical interpretations
NEXT STEPS
  • Study the derivation of radial acceleration in polar coordinates
  • Explore Lagrangian mechanics and its application to non-linear motion
  • Investigate the relationship between angular velocity and radial distance in spiral motion
  • Learn about the implications of varying forces in dynamic systems
USEFUL FOR

Students of physics, mathematicians, and anyone interested in the dynamics of rotational motion and forces in polar coordinates.

mathman44
Messages
204
Reaction score
0
Major brainfart here.

Consider the spiral motion of a particle such that the distance from the origin to the particle is

r(t) = e^t

with a constant angular velocity.

Now since the particle rotating with a constant angular velocity, I would think that the net force on the particle would have to be an inward centripetal force in the radial direction.

However, there must also be a net outward force, in the radial direction, to account for the accelerating distance between the origin and the particle.

Obviously this can't be right, but I can't pin down where I'm going wrong.

Cheers!
 
Physics news on Phys.org
hi mathman44! :smile:

(try using the X2 button just above the Reply box :wink:)

the radial acceleration is r'' - θ'2r :wink:

(and can you prove that? o:))
 
Isn't r'' the radial acceleration? Did you mean that r'' = -w^2 * r ?

And isn't this just equivalent to saying that the net force is equal to the centripetal force?

ps for a polar system I'm getting

mrw^2 - dV/dr = mr''

as the force equation using a simple lagrangian.
 
Last edited:
mathman44 said:
Consider the spiral motion of a particle such that the distance from the origin to the particle is

r(t) = e^t

with a constant angular velocity.

Now since the particle rotating with a constant angular velocity, I would think that the net force on the particle would have to be an inward centripetal force in the radial direction.
No. Consider a particle on a straight course missing the origin. It has an angular velocity around the origin, and if its speed changes appropriately it may even have a constant angular velocity for while (but will have to shoot off to infinity in a finite time).
However, there must also be a net outward force, in the radial direction, to account for the accelerating distance between the origin and the particle.
It's not at all clear that it would be a net outward or net inward. That will depend on the details of r(t).
Radial acceleration means the component of the acceleration which is directed towards/away from the origin (not, acceleration in the value of the radius). As Tiny Tim says, this is given by r'' - θ'2r. E.g. in circular motion about the origin, r'' = 0, but the particle will have acceleration towards the origin.
In your scenario, θ' is constant, and r'' = r. Note that if instead you had
r(t) = ewt, where θ' = w
then the radial acceleration would have been 0.
 
mathman44 said:
Isn't r'' the radial acceleration? Did you mean that r'' = -w^2 * r ?

acceleration in polar coordinates :wink:

$$ \boldsymbol{a}\ =\ (\ddot{r}-r\dot{\theta}^2)\hat{\boldsymbol{r}}\ +\ (r\ddot{\theta}+2\dot{r}\dot{\theta})
\hat{\boldsymbol{\theta}} $$

(the "hats" are unit vectors)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K