Hello everyone!!(adsbygoogle = window.adsbygoogle || []).push({});

Im studying the spreading of a pulse as it propagates in a dispersive medium, from a well known book. My problem arise when i have to solve an expression.

Firstly i begin considering that a 1-dim pulse can be written as:

u(x,t) = 1/2*1/√2∏* ∫A(k)*exp(ikx-iw(k)t) dk + cc (complex conjugate)

and then i showed that A(k) can be express in terms of the initial values of the problem, taking into account that w(k)=w(-k) (isotropic medium):

A(k) = 1/√2∏ ∫ exp(-ikx) * (u(x,0) + i/w(k) * du/dt (x,0)) dx

I considered du/dt(x,0)=0 wich means that the problems involves 2 pulses with the same amplitud and velocity but oposite directions.

So A(k) takes the form:

A(k) = 1/√2∏ ∫ exp(-ikx) * u(x,0)

Now i take a Gaussian modulated oscilattion as the initial shape of the pulse:

u(x,0) = exp(-x^2/2L^2) cos(ko x)

Then the book says that we can easily reach to the expression:

A(k) = 1/√2∏ ∫ exp(-ikx) exp(-x^2/2L^2) cos (ko x) dx

= L/2 (exp(-(L^2/2) (k-ko)^2) + exp(-(L^2/2) (k+ko)^2)

How did he reach to this?? How can i solve this last integral???

Then, with the expression of A(k) into u(x,t) arise other problem. How can i solve this other integral.

Thank you very much for helping me!!

**Physics Forums - The Fusion of Science and Community**

# Spreading of a pulse as it propagates in a dispersive medium

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: Spreading of a pulse as it propagates in a dispersive medium

Loading...

**Physics Forums - The Fusion of Science and Community**