Place 6 points in the plane, such that ratio of maximum distance / minimum distance (over these points) is as small as possible. The question is - what is the smallest ratio possible, and can we prove this is a tight bound? The following is my attempt for 6 (and fewer points):(adsbygoogle = window.adsbygoogle || []).push({});

1) For three points, we can clearly achieve max dist / min dist = 1 (equilateral triangle)

2) For four points, I tried 2 configurations - a point inside a triangle (couldn't do better than [tex]\sqrt{3}[/tex] doing that though, using an equilateral triangle and it's centroid) . Also, I got a better result with a square (I got [tex]\sqrt{2}[/tex] , with the maximum length side being the diagonal). I think that should be improvable though?

3) For five points, the best I got was with a regular pentagon (about 1.62).

4) For six points, a regular hexagon was NOT the best distribution - that gave a ratio of 2 between largest and smallest distance. The best I got was a regular pentagon, with the sixth point at it's intersection of angle bisectors - about a ratio of 1.9. Any way to improve this, and (more trickily) prove it's tight? My source says [tex]\sqrt{3}[/tex] is the tight bound?

I guess where I'm most stuck is proving a lower bound; i.e, you can't do better than x - I'm not sure how to get started there, even for the n = 4 case. If anyone has ideas or strategies, I'd really appreciate.

P.S: This isn't a homework or coursework problem - just a random puzzle from Rutgers problem solving seminar website.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Spreading points evenly in plane

Loading...

Similar Threads - Spreading points evenly | Date |
---|---|

I Winding number for a point that lies over a closed curve | Feb 16, 2017 |

I Do derivative operators act on the manifold or in R^n? | Jul 26, 2016 |

Tangent spaces at different points on a manifold | Nov 27, 2015 |

Rotate a three-sphere so every point moves in R^4? | Apr 4, 2015 |

Evenly spaced points in oddly shaped volume? | Jul 11, 2012 |

**Physics Forums - The Fusion of Science and Community**