Spring first natural frequency and hysteresis

AI Thread Summary
Compression helical springs may exhibit minimal hysteresis when new, but this can increase with repeated use and aging. The relationship between the first natural frequency and hysteresis is not well-defined, and existing formulas do not account for usage cycles. Signs of wear can occur in spring seats due to movement under load, which may contribute to hysteresis loss. Instances of yielding have been observed even within manufacturer specifications, often due to spring surge at high speeds. Overall, while hysteresis may not be prominent, wear and fatigue can affect spring performance over time.
UFO
Messages
18
Reaction score
2
TL;DR Summary
Coil spring change in first natural frequency, and hysteresis with use and age.
Could anyone help me with some info on compression helical springs. First I would like to know if this type of spring would even have any appreciable histeresis when new, and if so does it does it grow with repeted use and age. I would also like to know if there is any relationship beteen the first natural frequency, and hysteresis, and, or with use and age. Does this type of spring have any change in properties when used hard, in other words does it wear out at all before it reaches its fatigue end of life and breaks, other then a slight bit of yield or sag. I have found conflicting results on this, and the formula for the first natural frequency does not reference any use cycles on the spring.

Thanks for any help
 
Engineering news on Phys.org
I have experience with helical steel compression springs in high load, high speed, high cycle usages. I have never seen signs of hysteresis in the spring itself, but we never looked for it either. I have seen wear in spring seats caused by the springs moving under load. That wear would show up as a hysteresis loss.

I have seen yielding in compression springs where the usage was nominally within manufacturers specifications. That turned out to be caused by spring surge at high speed, which caused peak spring stress to exceed the design specification. Since the surge frequency was over 1 kHz, we needed 10,000 frame/second high speed video to see it. This work was in an industrial environment on a product line of high speed paper towel interfolding machines. After we fixed the problems, the springs lasted over a billion cycles without failure.

In earlier work (grad school), I tested over 4000 steel compression springs in high cycle fatigue. Depending on load, some tests went over 20,000,000 cycles. I did not see signs of hysteresis, but did see signs of wear on the spring ends. The machine was designed to test up to 12 springs at a time at 3600 cycles per minute. Citation to the paper: Michler, J.R., Bhonsle, S.R. High-cycle spring fatigue test machine. Exp Tech 17, 17–19 (1993). And a photo of the test machine from that paper:

Spring tester.jpg
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top