Springs: Can they be used to conserve energy?

AI Thread Summary
Springs can be utilized to conserve energy by harnessing the potential energy released from a falling mass. In a practical setup, a suspended mass can maintain the RPM of a flywheel, which drives an electric generator. When a load is applied to the generator, the braking system must adjust to maintain the flywheel's speed, indicating a dynamic relationship between the mass and energy output. The discussion also explores the concept of using a mass to shatter a plate, where the kinetic energy could be redirected into a spring mechanism, potentially allowing the mass to return to its original height. Further clarification and sketches of the proposed setups are anticipated for a deeper understanding of these interactions.
Hankelec
Messages
13
Reaction score
0
TL;DR Summary
My initial question may have read, "Can a spring reclaim energy?" Reclaim spent energy? Certainly not. Can a spring reset a released energy, of which no purposeful energy was extracted, to a level near its original value?
Through mechanics, potential energy is released by the controlled falling of a suspended mass. At an idling condition, a one tonne mass is allowed to slowly fall. The pushing force of that mass is used to maintain a set rpm of a flywheel. The flywheel shaft drives an electric generator.

At a no load condition on the generator, very little energy is required to maintain flywheel rpm. If a significant load is placed on the generator, the generator will in turn place a load on the flywheel. To maintain set rpm, the braking system, controlling the rate of fall of the mass, will have to be backed off, which will present what appears to be a larger force to the flywheel drive mechanism.

The previous set up is a practical use scenario. What my question pertains to is, if a mass were to be used as a shattering device and allowed to free fall to the point of kinetic energy required to shatted a plate, the mass would contact, shatter, and continue falling. The resistance of the plate to move because of inertia and the power needed to shatter and pass through the plate would exact an instantaneous energy drop.

But rather than stopping the mass at that point, let the mass keep its forward momentum, eventually reaching a point of equilibrium of an expansion spring, whose stored energy will reverse the mass' direction and will return it to....what point of its original height? For calcs, use whatever values you deem practical. Mass = one kilogram or a thousand kilogram. I assume formula will all bear the same relationship, with maybe an iota of difference due to air friction.
 
Last edited by a moderator:
Engineering news on Phys.org
Can you post a sketch of the setup? And what is the relationship between these shattering plates and the spring you mention?
 
berkeman said:
Can you post a sketch of the setup? And what is the relationship between these shattering plates and the spring you mention?
I will post a sketch and explain the relationships of various components, just not at this moment. I have to tend to some tasks at this time that will eat up most of the afternoon but should be able to post this evening
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Carburetor CFM A Holley Carb rated at 500 cfm 2 barrel carb has venturi diameter of 1.3/8". There are 2 barrel carbs with 600 cfm and have 1.45 diameter venturi. Looking at the area the 1.378 bore has 5.9 sq. Inch area. The 1.45 dia. has 6.6 sq. inch. 5.9 - 6.6 = 0.70 sq. inch difference. Keeping the 500 cfm carb in place, if I can introduce 0.7 sq inch more area in the intake manifold, will I have the same potential horsepower as a 600 cfm carb provide? Assume I can change jetting to...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top