Standard Activity in Electrochemistry

AI Thread Summary
The discussion focuses on the definition and implications of chemical potential in electrochemistry, particularly in relation to activity and standard states. It highlights the relationship between chemical potential, absolute activity, and activity coefficients, emphasizing how these concepts apply to mixtures, especially electrolyte solutions. The standard state for components is typically defined as pure substances at the system's temperature and pressure, allowing for the expression of chemical potential in terms of activity. A key point raised is the confusion regarding the standard activity being equal to 1, which is debated in the context of its dependence on temperature, pressure, and solute type. The conversation concludes with a correction regarding the terminology used for molality versus molarity in the equations presented.
Dario56
Messages
289
Reaction score
48
In the textbook Electrochemical Systems by Newman and Alyea, chapter 14: The definition of some thermodynamic functions, chemical potential of component (ionic or neutral) is written as a function of absolute activity: $$ \mu_i = RTln(\lambda_i) \tag {1} $$

where ##\lambda_i## is the absolute activity of the component ##i##.

What I know from thermodynamics is the following: $$ \mu_i = \mu_i ^⦵ + RTln \frac { f_i}{f_i ^⦵} = \mu_i ^⦵ + RT ln\frac {a_i}{a_i ^⦵} \tag{2}$$

where ##f_i## and ##f_i^⦵$## are partial and standard fugacities of component, respectively. It is important to note that ##a_i = \frac {f_i}{f_i^⦵}## and ##a_i ^⦵ = 1##.

Since we don't know the values of chemical potential, we can express them relatively to the standard state if we take that chemical potential at standard state is equal to zero: $$ \mu_i = RTln(a_i) = RTln(\lambda_i)\tag {3} $$

This is all well and good.

For mixtures in general (solutions of electrolytes are mixtures), standard state of the component is usually taken as a state of pure component at the temperature and pressure of the system (pure liquid for solvent or pure solid for solute). Choice of such standard state allows us to express chemical potential of the component in a mixture as a function of activity in a familiar way: $$ \mu_i = \mu_i ^⦵ + RT ln (x_i \gamma_i) \tag {4}$$

where ##\gamma_i## is the activity coefficient of the component ##i##. It is also evident that ##a_i = x_i \gamma_i##.

If solution is diluted than mole fractions are directly proportional to the molarity of the component ##m_i## (##m_i = \frac {x_i}{M(Solvent)})##

This allows us to express equation 5 in terms of molarity: $$\mu_i = \mu_i ^⦵ + RTln(m_i\gamma_i M(solvent)) \tag{5} $$

Standard state chemical potential is now redefined as we add ##RTln(M(solvent))## to its previous value and refers to the state of ideal solution with unit molarity: $$ \mu_i = \mu_i^{⦵'} + RTln(m_i \gamma_i) \tag{6} $$

Comparing with equation 2 we can write: $$ \frac {a_i}{a_i ^⦵} = \frac {\lambda_i}{\lambda_i ^⦵} = m_i \gamma_i \tag{7} $$

Next equation is written: $$ \lambda_i = m_i\gamma_i \lambda_i ^⦵ \tag {8} $$

In the textbook, it is explained that standard activity ##\lambda_i ^⦵## is a proportionality constant independent of composition and electrical state, but dependent on temperature, pressure and solute type. However, by definition of activity this value should always be equal to 1 and thus independent on any variable. Standard fugacity doesn't need to be equal to 1, but activity must be since ##\lambda_i ^⦵ = \frac {f_i^⦵}{f_i ^⦵}##, as far as my knowledge of thermodynamics goes.
 
Chemistry news on Phys.org
mi as you define it is molality, not molarity.
 
mjc123 said:
mi as you define it is molality, not molarity.
Yep, that's a mistake. It is clear what is meant, though.
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
I'm trying to find a cheap DIY method to etch holes of various shapes through 0.3mm Aluminium sheet using 5-10% Sodium Hydroxide. The idea is to apply a resist to the Aluminium then selectively ablate it off using a diode laser cutter and then dissolve away the Aluminium using Sodium Hydroxide. By cheap I mean resists costing say £20 in small quantities. The Internet has suggested various resists to try including... Enamel paint (only survived seconds in the NaOH!) Acrylic paint (only...
Back
Top