I Standard designation for generalization of Euler-Lagrange?

AI Thread Summary
The discussion centers on the naming conventions for an equation related to the Euler-Lagrange Theorem, with the term "Euler-Poisson Equation" mentioned as a possible designation. There is uncertainty about its recognition among English-speaking mathematicians, as it has historical usage in Russian literature. The conversation also touches on the concept of the "Lagrange Derivative" and its relevance in differential equations, particularly in the context of the Euler-Lagrange equation. Participants seek clarification on the differences between partial and total derivatives in this framework and their implications for solving Lagrangian problems. Overall, the thread highlights the need for standardized terminology in mathematical physics.
nomadreid
Gold Member
Messages
1,750
Reaction score
243
TL;DR Summary
In Wiki's article on the Euler-Lagrange equation , under "Generalizations">'Single function of single variable...', there is an equation (stated in main text). Is there a standard name for it? Some Russian authors call it the Euler-Poisson equation.
In English, does the equation
1641272080870.png

have any standard name besides (generalization of) the Euler-Lagrange Theorem? I have seen the designation "Euler-Poisson Equation" used by the Russian mathematician Lev Elsholtz way back in 1956 repeated in recent Russian webpages, but am not sure whether this would be recognizable (perhaps with a footnote?) by English-speaking mathematicians. (Not to get mixed up with either the Euler-Poisson-Darboux Equation or the Euler-Poisson Integral.)

I was unsure whether to post this in the mathematics or the physics section, as it is strictly speaking mathematics but mainly used in physics. If a moderator wishes to move it, then my thanks in advance to that moderator.
 
Physics news on Phys.org
In Schouten's Ricci Calculus (Springer) and his Tensor Analysis for Physicists (Dover),
he refers to the "Lagrange Derivative".

previews from Google Books... search for "lagrange derivative"

From Ricci Calculus,
1642179906915.png

1642179928749.png
From Tensor Analysis for Physicists,
1642180247088.png

1642180287607.png
 
Thanks very much, robphy. (Sorry for the delayed response.)

(You attached the same excerpt twice.)

Unfortunately, when I googled "Lagrange derivative", I came up empty (i.e., nothing under that title, and, google sending me what was closest, everything was about the Euler-Lagrange Equation).

I am working through the text you sent. Given that I am close to nil in differential equations, perhaps you can answer a couple of questions on it. First,
1642344338512.png

1642345096448.png

Wouldn't that make the Script-L a functional?

I am attempting to see whether this text would help me interpret the so-called Euler-Poisson equation in where the partial derivatives such as
1642346559291.png

in the Euler-Lagrange equation are replaced by the "total partial derivative", or "complete partial derivative",
1642346588105.png

which are defined as follows (Elgots, Calculus of Variations)
1642345442946.png

Is the "complete partial derivative" here the same as the "total derivative"?

For which situation(s) is the replacement of partial derivatives by "total partial derivatives" in the Euler-Lagrange equation useful/valid? It appears that when one applies this new equation to a Lagrangian, one is likely to get a different answer than the application of the usual Euler-Lagrange equation, so the circumstances must be different, no?

Sorry if the question is obvious, but my level of "diffy-Q" is rather basic. Thanks for any help.

 
nomadreid said:
Thanks very much, robphy. (Sorry for the delayed response.)

(You attached the same excerpt twice.)

Hmmm... that's odd. I see 4 distinct images, 2 each from the two works (p.111, 112 from Ricci Calculus, p 78-79, 79-80).

with quotes

I've been interested in Schouten's work for a while...
so I recall seeing the "Lagrange derivative"
... and, thus, my response.
Unfortunately, I don't know any more details, except for these terms that may be related to what you seek.
 
I know it as the functional derivative: You define
$$S[q]=\int_{t_1}^{t_2} \mathrm{d} t L(q,\dot{q},\ddot{q},\ldots)$$
as a functional on the space of trajectories ##q(t)## with fixed initial and final point. Then via variation and integration by parts you get
$$\delta S=\int_{t_1}^{t_2} \mathrm{d} t (\partial_q L - \mathrm{d}_t \partial_{\dot{q}} L + \mathrm{d}_t^2 \partial_{\ddot{q}} L+\cdots).$$
This defines the functional derivative as
$$\frac{\delta S}{\delta q(t)} = \partial_q L - \mathrm{d}_t \partial_{\dot{q}} L + \mathrm{d}_t^2 \partial_{\ddot{q}} L+\cdots$$
 
Thanks very much, robphy and vanhees71. Very helpful!
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top