Static/Kinetic Friction, Probelm solving question Purely algebraic

  • Thread starter Thread starter Prodigium
  • Start date Start date
  • Tags Tags
    Friction
Click For Summary
SUMMARY

The discussion focuses on deriving expressions for the coefficients of static and kinetic friction between a coin and the floor of a rocket-propelled trolley. The trolley accelerates according to the equation v(t) = bt², where b is a constant, until the fuel is exhausted at time t₂. The static friction coefficient is derived as μₛ = (2bt₁)/g, where t₁ is the time when the coin begins to slide. The kinetic friction coefficient remains to be determined, as the user seeks guidance on this aspect.

PREREQUISITES
  • Understanding of Newton's Laws of Motion
  • Familiarity with the concepts of static and kinetic friction
  • Basic knowledge of calculus for differentiation
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Research the derivation of kinetic friction coefficients in non-inertial reference frames
  • Learn about the dynamics of objects in accelerating frames of reference
  • Study the application of Newton's Second Law in frictional scenarios
  • Explore examples of friction in rocket propulsion systems
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and friction, as well as educators seeking to explain the principles of motion and forces in a practical context.

Prodigium
Messages
11
Reaction score
0

Homework Statement


A rocket Propelled Trolly begins at rest time t = 0s, and then accelerates along a straight track such that the speed at time t is
v(t)=bt^{2}
where b is a constant, during the period 0<t<t2. at time t_{2}, the rocket fuel is exhausted and the trolley continues with constant speed
v_{f}=bt^{2}_{2}
A coin is initially at rest on the floor of the trolley. At time t_{1}, where 0&lt;t_{1}&lt;t_{2}, it starts to slide backwards. It stops sliding at t_{3}, where t_{3}&gt;t_{2}.
Use this information to obtain expressions for the coefficients of static and kinetic friction between the coin and the floor of the trolley.


2. The attempt at a solution
a=\frac{d}{dt}(v(t))

a=2bt

F_{s}=\mu_{2}N

F_{s}=Ma (M=mass of trolley)

N=mg (m=mass of coin)

\mu_{s}=\frac{F_{s}}{N}

\mu_{s}=\frac{2btM}{mg}

Thats as far as I got and I'm not even sure if what I've done is correct.
Thanks in advance.
 
Physics news on Phys.org
Welcome to PF, Prodigium

Initially, when the cart begins to accelerate, Newton's 1st law would suggest that, in the absence of any external forces, the coin would remain stationary, which would mean it would begin to slide backwards relative to the floor of the cart. However, there ARE forces acting on the coin, namely static friction (which is forward facing, because it prevents the coin from sliding backwards relative to the cart floor). As a result, the coin accelerates along with the cart, and hence it does not slide relative to the cart floor. Therefore, I would say that in order for the coin to have the same acceleration a(t) as the cart does, the net force on the coin must be equal to:

F = ma(t)

note the lowercase m, not uppercase like you had. This is just Newton's 2nd Law. Unfortunately, this lack of sliding can only occur up to a limit, because the maximum amount of static frictional force that is available is equal to (the coefficient of static friction) * (the normal force) i.e.:

Fs ≤ μsN

Now, we know that sliding starts at time t = t1, and hence a = 2bt1. This is the instant at which the force required to accelerate the coin is equal to the maximum available static frictional force. Beyond this time, static friction will no longer be sufficient to prevent the coin from sliding. So, we equate the net force at this instant to the max value of static friction:

ma(t1) = μsN

2mbt1 = μs(mg)

μs = (2bt1)/g
 
Last edited:
Ah so because the force is acting on the coin not the trolley it's "m" instead of "M" and therefore cancels. Thanks now to attempt the kinetic coef.
 
Thanks for the welcome, so far from what I've seen it's a brilliant site.
 
could you give me a hint for the kinetic because I am completley stuck and have been for a while. thanks
 

Similar threads

Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
17
Views
3K
  • · Replies 8 ·
Replies
8
Views
18K
  • · Replies 28 ·
Replies
28
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K