I am trying to make the connection from statistical mechanics to thermodynamics for the isothermal isobaric ensemble. Partition function = (sum of)exp(-BEj-gamma*Vj).(adsbygoogle = window.adsbygoogle || []).push({});

I have followed T.L. Hill [Statistical Mechanics, p. 67] but can not understand how he justifies dE=(sum of)EdP, rather than (sum of) EdP +(sum of)PdE. This makes it easy, but I think (sum of)PdE is not zero. He doesn't make this simplification for the canonical or grand canonical ensembles.

However, since Ej = Ej(P, N) this will introduce an unpleasant (dE/dP)dP term (partial derivative with N held constant) which I do not know what to do with. I can get the TdS and PdV terms but am stuck with what this nasty extra term means. Any ideas would be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Statistical Mechanics to Thermo for Isothermal Isobaric Ensemble

**Physics Forums | Science Articles, Homework Help, Discussion**