I've run into a problem which has been bugging me for days. I know its related to the Stern-Gerlach experiment about firing hydrogen through an inhomogeneous magnetic field, but all i can do is give a vague(adsbygoogle = window.adsbygoogle || []).push({}); qualitativedescription of the answers, and not an actual numerical one (because I don't entirely know what equations should be useful).

I know theres stuff about magnetic moments and spin and dipole moments happening here, but I can't seem to reconcile all these ideas. I'm not looking for a raw solution (I still want to learn something), just pointers as to the physics that's happening here, and possibly what equations are useful. Thanks.

I know (basically) that because of the inhomogeneous magnetic field, the atoms experience a force in the z-direction (vertically). Classically, theres stuff about all possible ranges of spin/momentum (or something) which would give a continuous band on the screen. Quantum mechanically, theres stuff about quantized spins that will only allow discrete outcomes, and i think the relativistic bit refers to the spin quantum number, m_s, but it might not. I can kinda handle the first three parts (if I'm even on the right track), but the fourth part - actually finding where the beam will appear - is a bit mysterious at the moment. Consider a well-collimated beam of hydrogen atoms in their ground state (ie with zero orbital angular momentum and spin = 1/2) in which the atoms are in thermal equilibrium at a temperature of 600K. The beam enters a region of length 9cm, in which there is a strong magnetic field with a gradient of 2x10³T/m perpendicular to the axis of the beam. After leaving this region the beam travels 1.2m to a screen.

- What distribution of hydrogen atoms would one observe at the detector?
- How is this different from classical expectations?
- How is this different from non-relativistic quantum predictions?
- Where will the beam appear on the screen?
- How does this provide evidence for a "spin g-factor" of 2?

Thanks again.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Stern-Gerlach Experimental Calculation

**Physics Forums | Science Articles, Homework Help, Discussion**