Stochastic Calculus: Conditional Expectation

In summary: This makes sense to me.In summary, when calculating expected value for a discrete-valued random variable like W, it is important to specify the set of unique possible values it can take and the probability of each value. When considering Z as a function of X and Y, it is necessary to take into account all possible combinations of X and Y for a given value of Z, rather than using global averages.
  • #1
WMDhamnekar
MHB
376
28
Homework Statement
. Suppose we roll two dice, a red and a green one, and let X
be the value on the red die and Y the value on the green die. Let Z = X/Y .
1)Find E[X + 2Y | Z].
2)Let W = E[Z | X]. What are the possible values for W? Give the
distribution of W.
Relevant Equations
Not applicable
1677485869430.png

1677485882966.png

1677485898774.png
 
Physics news on Phys.org
  • #2
Your answer to 1 is wrong, as you can easily check using some actual values of Z, e.g. for Z = 6, E(X+2Y) = 8.

Your mistake appears to be using global averages for ZY and Z, calculated over all combinations of X and Y. But for a given Z, not all combinations are possible. for example, for Z = 6, 5 or 4, Y can only have the value 1, and X the value of Z. For Z = 1, only combinations with X = Y are possible. Thus E[Y|Z] is not a constant but depends on Z.
 
  • Like
Likes WMDhamnekar
  • #3
To specify the distribution for a discrete-valued random variable like W you need to specify the set of unique possible values it can take, and the probability of each value.

You have identified above six possible values of W=E[Z|X], each corresponding to a different result X from the red die. Assuming that die is fair, what is the probability of each of those different values?

One thing remains: you need to check wheter any of the six values of W are the same, ie if two different values of X can give the same value of W. If any do, you need to combine them by adding their probabilities.
 
  • Informative
Likes WMDhamnekar
  • #4
I prepared two tables. Now how to compute E[X +2Y| Z]

1677775045533.png


1677775055629.png
 
  • #5
For instance, for Z=1 in the second table, you have 6 equally likely possibilities for (X,Y): (1,1), (2,2), (3,3), (4,4), (5,5), (6,6).
In your first table, that gives: P(X+2Y | Z=1) = P( X+2Y = 3,6,9,12,15,18 | Z=1) = 1/6.

Likewise, for Z=1/2 in the second table, you have 3 equally likely possibilities for (X,Y): (1,2), (2,4), (3,6).
In your first table, that gives: P(X+2Y | Z=1/2) = P( X+2Y = 5,10,15 | Z=1/2) = 1/3.
Etc.
For each value of Z, you get a distribution of X+2Y values that sum to 1.
I don't see a short-cut way to calculate the expected value. I guess you might just have to tediously calculate it.
 
  • #6
I'm a bit confused on your notation. Generally, in an expression E(X|Y), Y is an event, and X,Y are events in the same sample space. Maybe you mean E(X| Z=Zo) ?
 
  • Like
Likes FactChecker
  • #7
FactChecker said:
For instance, for Z=1 in the second table, you have 6 equally likely possibilities for (X,Y): (1,1), (2,2), (3,3), (4,4), (5,5), (6,6).
In your first table, that gives: P(X+2Y | Z=1) = P( X+2Y = 3,6,9,12,15,18 | Z=1) = 1/6.

Likewise, for Z=1/2 in the second table, you have 3 equally likely possibilities for (X,Y): (1,2), (2,4), (3,6).
In your first table, that gives: P(X+2Y | Z=1/2) = P( X+2Y = 5,10,15 | Z=1/2) = 1/3.
Etc.
For each value of Z, you get a distribution of X+2Y values that sum to 1.
I don't see a short-cut way to calculate the expected value. I guess you might just have to tediously calculate it.
E[ X + 2Y | Z] = [3 + 6 + 9 + 12 + 15+ 18 =63]* 1/6 = 10.5 + [5 +10+15]*1/12= 2.5 + [7+ 14]*1/18 =1.1667 + [9 + 11 + 13 +12 + 11+ 13+ 6 + 10 +14 + 7 +9 + 11 +13 +17 + 8 +16 =179]*1/36 = 4.9722222 +[4 +8 +12=24]*1/12=2 + [ 8 +16=24]*1/18 = 1.33333 +[5 + 10 = 15]*1/18 =0.8333333 + [7 +14=21]*1/18 = 1.1667 = 24.47223
 
  • #8
I guess that's right (I haven't checked your calculations). But I do have the same question as @WWGD.
Does the notation E(X+2Y | Z) mean the function, f(z), of z, f(z) = E(X+2Y | Z=z)? Or does it mean that you take an expected value over all possible values of Z as you did?
 
  • Like
Likes WWGD
  • #9
FactChecker said:
I guess that's right (I haven't checked your calculations). But I do have the same question as @WWGD.
Does the notation E(X+2Y | Z) mean the function, f(z), of z, f(z) = E(X+2Y | Z=z)? Or does it mean that you take an expected value over all possible values of Z as you did?
Suppose we roll two dice, one is red one and another one is green one. If we let the values on flipping the two dice be X and Y. ( X for the value on red die and Y for the value on green die). Then obviously X and Y values both lies in the same sample space and Z, the function of X and Y will take the value Z = X/Y.
 
  • #10
WMDhamnekar said:
Suppose we roll two dice, one is red one and another one is green one. If we let the values on flipping the two dice be X and Y. ( X for the value on red die and Y for the value on green die). Then obviously X and Y values both lies in the same sample space and Z, the function of X and Y will take the value Z = X/Y.
I think that your interpretation of E(X+2Y | Z) is the likely correct one. You are keeping Z as a random variable rather than defining a specific event, Z=##z_0##.
 

1. What is stochastic calculus?

Stochastic calculus is a branch of mathematics that deals with the modeling and analysis of random processes. It involves the use of probability theory and differential equations to study the behavior of systems that involve randomness.

2. What is conditional expectation in stochastic calculus?

Conditional expectation is a mathematical concept that represents the expected value of a random variable given the knowledge of another random variable. In stochastic calculus, it is used to model the expected future value of a random process based on its past behavior.

3. How is conditional expectation calculated in stochastic calculus?

Conditional expectation is calculated using the law of iterated expectations, which states that the expected value of a random variable given another random variable is equal to the expected value of the first random variable, calculated using the conditional probability distribution of the second random variable.

4. What is the role of conditional expectation in stochastic calculus?

Conditional expectation is a fundamental tool in stochastic calculus, as it allows for the prediction of future values of a random process based on its past behavior. It is also used in the development of stochastic differential equations, which are essential for modeling and analyzing complex systems that involve randomness.

5. How is conditional expectation used in real-world applications?

Conditional expectation has a wide range of applications in various fields, such as finance, engineering, and physics. It is used to model and analyze systems that involve uncertainty, such as stock prices, weather patterns, and particle behavior. It is also used in machine learning and artificial intelligence algorithms to make predictions based on past data.

Similar threads

  • Calculus and Beyond Homework Help
Replies
6
Views
710
  • Calculus and Beyond Homework Help
Replies
0
Views
124
  • Calculus and Beyond Homework Help
Replies
29
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
759
  • Differential Equations
Replies
0
Views
283
  • Calculus and Beyond Homework Help
Replies
5
Views
775
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Quantum Interpretations and Foundations
Replies
1
Views
487
  • Set Theory, Logic, Probability, Statistics
Replies
6
Views
656
Replies
2
Views
384
Back
Top