- #1
- 372
- 0
Stokes' Theorem - Limits of Integration - Urgent! Please give a hand :)
Assume the vector function
[tex]\vec{A} = \hat{a}_x \left( 3x^2 y^3 \right) + \hat{a}_y \left( -x^3 y^2 \right)[/tex]
Evaluate
[tex] \int \left( \nabla \times \vec{A} \right) \cdot d\vec{s} [/tex]
over the triangular area (see figure attached).
Above.
Step 1.
[tex]\nabla \times \vec{A} & = \begin{vmatrix} \displaystyle \hat{a}_x & \displaystyle \hat{a}_y & \displaystyle \hat{a}_z \vspace{0.25cm} \\ \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial y} & \displaystyle \frac{\partial}{\partial z} \vspace{0.25cm} \\ \displaystyle A_x & \displaystyle A_y & \displaystyle 0 \end{vmatrix} \\
& = \begin{vmatrix} \displaystyle \frac{\partial}{\partial y} & \displaystyle \frac{\partial}{\partial z} \\ \displaystyle A_y & \displaystyle 0 \end{vmatrix} \hat{a}_x - \begin{vmatrix} \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial z} \\ \displaystyle A_x & \displaystyle 0 \end{vmatrix} \hat{a}_y + \begin{vmatrix} \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial y} \\ \displaystyle A_x & \displaystyle A_y \end{vmatrix} \hat{a}_z \\
& = \cancelto{0}{-\frac{\partial A_y}{\partial z} \, \hat{a}_x} + \cancelto{0}{\frac{\partial A_x}{\partial z} \, \hat{a}_y} + \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \, \hat{a}_z[/tex]
Step 2
[tex]\frac{\partial A_y}{\partial x} = \frac{\partial}{\partial x} \left( -x^3 y^2 \right) = -y^2 \frac{d}{dx} \left( x^3 \right) = -3x^2 y^2[/tex]
Step 3
[tex]- \frac{\partial A_x}{\partial y} = - \frac{\partial}{\partial y} \left( 3x^2 y^3 \right) = -3x^2 \frac{d}{dy} \left( y^3 \right) = -9x^2y^2[/tex]
Step 4
[tex]\nabla \times \vec{A} & = \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \, \hat{a}_z \\
& = \left(-12x^2 y^2 \right) \, \hat{a}_z[/tex]
Step 5
[tex] \int \int \left(-12x^2 y^2 \right) \, \hat{a}_z \cdot \left( dx dy\right) \hat{a}_z [/tex]
Not sure about the limits of integration - THIS IS "THE" PROBLEM. Maybe it's trivial and I just can't see it right now. I do expect to get one of the limits as a variable.
I actually did the other way around (via Stokes' Theorem) P1 (1,1) to P2 (2,2) to P3 (2,1) to P1 and got
[tex]\oint _S \vec{A} \cdot d\vec{\ell} = 7y^3 - 7x^3[/tex]
I'm pretty sure this one is right, so I keep trying to make my other method work but without success so far. Any help is highly appreciated.
THANKS, FOLKS!
Homework Statement
Assume the vector function
[tex]\vec{A} = \hat{a}_x \left( 3x^2 y^3 \right) + \hat{a}_y \left( -x^3 y^2 \right)[/tex]
Evaluate
[tex] \int \left( \nabla \times \vec{A} \right) \cdot d\vec{s} [/tex]
over the triangular area (see figure attached).
Homework Equations
Above.
The Attempt at a Solution
Step 1.
[tex]\nabla \times \vec{A} & = \begin{vmatrix} \displaystyle \hat{a}_x & \displaystyle \hat{a}_y & \displaystyle \hat{a}_z \vspace{0.25cm} \\ \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial y} & \displaystyle \frac{\partial}{\partial z} \vspace{0.25cm} \\ \displaystyle A_x & \displaystyle A_y & \displaystyle 0 \end{vmatrix} \\
& = \begin{vmatrix} \displaystyle \frac{\partial}{\partial y} & \displaystyle \frac{\partial}{\partial z} \\ \displaystyle A_y & \displaystyle 0 \end{vmatrix} \hat{a}_x - \begin{vmatrix} \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial z} \\ \displaystyle A_x & \displaystyle 0 \end{vmatrix} \hat{a}_y + \begin{vmatrix} \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial y} \\ \displaystyle A_x & \displaystyle A_y \end{vmatrix} \hat{a}_z \\
& = \cancelto{0}{-\frac{\partial A_y}{\partial z} \, \hat{a}_x} + \cancelto{0}{\frac{\partial A_x}{\partial z} \, \hat{a}_y} + \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \, \hat{a}_z[/tex]
Step 2
[tex]\frac{\partial A_y}{\partial x} = \frac{\partial}{\partial x} \left( -x^3 y^2 \right) = -y^2 \frac{d}{dx} \left( x^3 \right) = -3x^2 y^2[/tex]
Step 3
[tex]- \frac{\partial A_x}{\partial y} = - \frac{\partial}{\partial y} \left( 3x^2 y^3 \right) = -3x^2 \frac{d}{dy} \left( y^3 \right) = -9x^2y^2[/tex]
Step 4
[tex]\nabla \times \vec{A} & = \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \, \hat{a}_z \\
& = \left(-12x^2 y^2 \right) \, \hat{a}_z[/tex]
Step 5
[tex] \int \int \left(-12x^2 y^2 \right) \, \hat{a}_z \cdot \left( dx dy\right) \hat{a}_z [/tex]
Not sure about the limits of integration - THIS IS "THE" PROBLEM. Maybe it's trivial and I just can't see it right now. I do expect to get one of the limits as a variable.
I actually did the other way around (via Stokes' Theorem) P1 (1,1) to P2 (2,2) to P3 (2,1) to P1 and got
[tex]\oint _S \vec{A} \cdot d\vec{\ell} = 7y^3 - 7x^3[/tex]
I'm pretty sure this one is right, so I keep trying to make my other method work but without success so far. Any help is highly appreciated.
THANKS, FOLKS!
Attachments
Last edited: