Strain Energy Functions and Springs

AI Thread Summary
The discussion focuses on the relationship between strain energy functions and springs, particularly the role of the negative sign in force calculations. It highlights that the force in a spring is derived from the derivative of potential energy, which is negative with respect to displacement. A question arises about the absence of the negative sign in the strain energy function, prompting a comparison with tensile stress in a one-dimensional bar. The conversation emphasizes the need for a coherent understanding of elasticity and the constants relating stress and strain. Ultimately, the clarification of the negative sign helps reconcile the concepts of springs and strain energy functions.
Trying2Learn
Messages
375
Reaction score
57
TL;DR Summary
Strain energy and elastic constants: why is the strain energy formed this way
(If this is in the wrong forum, please move it)

Here is the potential energy of a spring

1663669890254.png

Here is the strain energy function in elasticity
1663669923571.png


The look alike -- I like that.

If we want the force in the spring, we take the derivative of V with respect to the displacement and make the result NEGATIVE
1663669998152.png

However, we note the following property of the strain energy function (from Fung's Solid Mechancis, page 128)

1663670034239.png


So, real stupid question: what happened to the negative?

I mean, I am trying to work my way through how elasticity, strain energy, etc. lead to the number of constants relating stress and strain. I will work this through on my own. I am trying to put all of this in some sort of contextual balance.

I can intuit the need for a strain energy function without the negative. But part of me wants to see the negative to make it harmonious with a spring.

Can someone get me out of this?
 
Engineering news on Phys.org
Try replacing the spring with a 1d bar. Upon extension, the bar experiences a tensile stress which produces a negative force on a point mass at the end of the bar/string.

The first equation looks at the force on a point mass. The force required to stretch the spring the relevant distance is the negative of this force.
 
Last edited:
  • Like
Likes Trying2Learn
Ah, of course. Thank you!
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top