Strain vs Pressure: What's the Difference?

  • Thread starter Thread starter asdf1
  • Start date Start date
  • Tags Tags
    Pressure Strain
Click For Summary
SUMMARY

The discussion clarifies the distinctions between strain and pressure in materials science. Strain is defined as a dimensionless quantity representing the change in length relative to the original length, expressed in units such as in/in or ft/ft. In contrast, pressure is quantified as force per unit area (F/A) with units like N/m² or psi. The conversation also highlights that while pressure and stress share the same units, strain is fundamentally different due to its lack of dimensions.

PREREQUISITES
  • Understanding of basic mechanics concepts
  • Familiarity with units of measurement in physics
  • Knowledge of stress and strain definitions in materials science
  • Basic grasp of mathematical formulas related to force and area
NEXT STEPS
  • Research the concept of stress in materials science
  • Explore the differences between hydrostatic stress and general stress
  • Learn about the applications of strain in engineering
  • Study the implications of pressure in fluid mechanics
USEFUL FOR

Students and professionals in engineering, materials science, and physics who seek to deepen their understanding of mechanical properties and behaviors of materials under various forces.

asdf1
Messages
734
Reaction score
0
What's the difference between strain & pressure? The formulas look the same...
 
Physics news on Phys.org
asdf1 said:
What's the difference between strain & pressure? The formulas look the same...
Strain and pressure do not have the same units.

Pressure and stress do have the same units (Force/(unit area).

Strain is a dimensionless quantity which is the (change in length)/(unit length) and has units like in/in, ft/ft, m/m, and is often expressed in terms of percentage.

Strain is (L-Lo)/Lo,

Pressure = F/A and units are N/m2, psi (lbf/in2), . . . .
 
Ahhh! I must be going bonkers... Sorry! I mean stress and pressure...

Stress= Force/Cross-sectional Area
Pressure=Force/Area
 
... are you looking for the difference between "pressure stress" (hydrostatic stress, or well, pressure) and stress (a single component of stress) in general? The former being the average of the 11, 22 and 33 components.
 
Stress in a point placed inside the differential area \Delta A is defined as \vec{\rho}=\lim_{\Delta A \rightarrow 0} \frac{\Delta \vec{F}}{\Delta A}. It can have any direction, while the direction of pressure is predefined mostly; air pressure, wind pressure, hydrostatic pressure, saturation pressure, etc. So, I would say that stress is a more general term.
 
Last edited:
That clears things up. Thank you very much!
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 61 ·
3
Replies
61
Views
13K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
6K