B Strange Relationships of the Circle

dom_quixote
Messages
50
Reaction score
9
PHOTOGRAPHIC REDUCTION OR ENLARGEMENT
magno.JPG


The proportions of a circle never change. But...

radius.JPG


Question:
If a circle is always a circle, then how is it possible that the S/L and {[S/L]/R} ratios of a circle can vary as a function of the radius size?
 
  • Skeptical
Likes weirdoguy and PeroK
Mathematics news on Phys.org
Because they aren't unitless quantities. S has units of length squared and L has units of length, so when you double the length, they don't change the same way.
 
  • Like
  • Love
Likes mfb and dom_quixote
There are errors in your table for the perimeter. It should read 2/5π and 3/5π 2/3π for the first two. And S/L for R=1/2 is 1/4, not 1.
 
Last edited:
  • Like
Likes dom_quixote and berkeman
jack action said:
There are errors in your table for the perimeter. It should read 2/5π and 3/5π for the first two. And S/L for R=1/2 is 1/4, not 1.
##\frac 2 3 \pi## ?
 
  • Like
Likes dom_quixote and jack action
dom_quixote said:
If a circle is always a circle, then how is it possible that the S/L and {[S/L]/R} ratios of a circle can vary as a function of the radius size?
Try it with a square if you have problems understanding it for a circle. It's more a geometry question rather than physics.

Related topic:
https://en.wikipedia.org/wiki/Square–cube_law
 
  • Like
Likes dom_quixote and Nugatory
There are many basic arithmetic errors in your charts. The [S/L]/R column should always be 1/2, for instance.
 
  • Like
Likes dom_quixote, Nugatory and gmax137
In fact, I made a mistake :sorry:.
The corrected table is below:

rad_corr.JPG


Note in the TABLE I a singularity, when R=2/1:
S = L ?
Certainly not!
S expresses area;
L expresses length.

P.S.:
If there is another error in the table, I apologize for my numerical dyslexia :wink:!
 
Last edited:
  • Haha
Likes PeroK
How about applying some simple algebra before you make the tables?
Since ##S=\pi R^2## and ##L=2 \pi R## then ##\frac{S}{L} = \frac{\pi R^2}{2 \pi R} = \frac{R}{2}## and ##\frac{(\frac{S}{L})}{R} = \frac{1}{2}##.
That is all there is to this, now you can correct your tables.
 
  • Like
  • Love
Likes hutchphd, Nugatory, dom_quixote and 1 other person
dom_quixote said:
S = L ?
Certainly not!
S expresses area;
L expresses length.
They can have have the same numerical value (which is what your table shows), but different units (which your table doesn't show).

dom_quixote said:
If there is another error in the table, I apologize for my numerical dyslexia :wink:!
See post #6 and #8.
 
  • Like
Likes dom_quixote
  • #10
dom_quixote said:
Note in the TABLE I a singularity, when R=2/1:
S = L ?
Certainly not!
S expresses area;
L expresses length.
Why don't you use letters that more closely align with what they represent?
R is fine for radius, but why are you using S for area and L for length? Better would be A for area and P or C for either perimeter or circumference.
DaveE said:
How about applying some simple algebra before you make the tables?
Or even some simple arithmetic.
You have errors in the first two rows of table 1.
##2\pi \frac 1 5 \ne \frac{5\pi} 2##
##2\pi \frac 1 3 \ne \frac{3\pi} 2##
 
Last edited:
  • Like
Likes dom_quixote
  • #11
The initial questions have been asked and answered, so I'm closing this thread.
 
  • Like
Likes weirdoguy, jim mcnamara and PeroK
Back
Top