- #1
notknowing
- 185
- 0
In any textbook on relativity, one finds the classical expression for the stress-energy tensor of a perfect fluid. In generalizing this tensor to curved spacetime, one just replaced the flat-spacetime metric tensor by the metric tensor of curved spacetime. It seems logical to do so, but in my view there is no certainty that this is indeed the correct generalisation. Maybe the generalisation could be defined differently. So, how can we know for sure that we use the correct form of the stress-energy tensor in Einsteins Field equations ? Does there exist experimental evidence that we have indeed the correct tensor ? Also for the stress-energy tensor of the electromagnetic field, one could pose the same questions.