I'm sorry,SA,but it's the other way around,at least the names would indicate that:
B(p,q)=:\int_{0}^{1} x^{p-1}(1-x)^{q-1} \ dx \ ,\mbox{Re(p)}>0,\mbox{Re(q)}>0
is called Eulerian Integral of the First Kind ("Beta Euler").
\Gamma (z)=:\int_{0}^{\infty} e^{-t}t^{z-1} \ dt \ , \mbox{Re(z)}>0
is called Eulerian Integral of the Second Kind ("Gamma Euler").
\Gamma (z)=\lim_{n\rightarrow +\infty} n^{z}B(z,n+1) \ , \ n\in\mathbb{N}
B(p,q)=\frac{\Gamma (p)\Gamma (q)}{\Gamma (p+q)} \ , \ \mbox{Re(p)}>0,\mbox{Re(q)}>0
To the OP:there's only one way to find out:a(n) (auto)biography of Mr.Veneziano.
Daniel.