OK, electrons, quarks etc.. in string theory.
I'll start off by stating that nobody really knows how an electron manifests itself in string theory, unless they know and haven't told anyone ;)
Lets first think about a weak-coupling scenario (where strings don't like to interact strongly, so that we can still talk about what individual strings actually do..) and then we'll move on to a strong-coupling scenario (where strings like to interact so strongly that their stringy nature becomes less and less clear..).
One idea that I like is that an electron corresponds to an open string (in its lowest energy level) that is stretched between two stacks of intersecting D-branes. The number of D-branes in each stack is important. Each endpoint of the open string can attach to any of the branes in a given stack. Furthermore, there is a rotational symmetry, or U(1) symmetry, associated to every brane. If one of the two stacks has 2 branes, then the symmetry becomes U(2), 3 branes lead to U(3), etc. Therefore, if we have two stacks of branes, the first stack having 1 brane and the second having 2 branes, the resulting symmetry is U(1)xU(2), which is almost U(1)xSU(2), the symmetry group (one could say one of the key defining properties) of electrons. How to get SU(2) from U(2) is tricky, and one usually ends up with extra U(1)'s. How to get the right masses is even trickier ... Nevertheless, continuing along these lines, the Standard Model spectrum has symmetry group U(1)xSU(2)xSU(3), so you can imagine having 3 stacks of intersecting D-branes, each stack having respectively 1, 2 and 3 branes. (Here you're suppose to imagine a triangle, each side of which corresponds to one of the three stacks.) Then, all the ways you can imagine open string attached to these three stacks of branes correspond to all the particles of the standard models, and more ... One common example is that these D-branes are in fact D6-branes, so that there are 4 large dimensions (corresponding to the observed world), and 6 extra dimensions associated to these stacks of D6-branes, which have open string attached to them. The total dimensionality is 10, as required by anomaly cancellation conditions.
OK, that's a weak coupling manifestation of the standard model.
However, there are indications that in fact our world lives in the strong-coupling limit of string theory ... (and that is unfortunate for the poor people like myself who like to be able to compute things!) In the strong coupling limit an extra dimension becomes visible, large, and the total dimensionality is now 11: this is the realm of M-theory. In fact, one can go quite far along these lines ... Acharya, Kane and Kumar have been voicing for years that M-theory (on a G2 manifold, don't ask what this is .. ) gives rise to the standard model spectrum with a Higgs of mass 125 Gev (!), long before the LHC result was out (see
http://arXiv.org/pdf/1204.2795.pdf and references therein), claiming in fact that this is a GENERIC PREDICTION!
Hope that helps!
Wakabaloola