MHB Sum of Cosines: Find the Infinite Series

Click For Summary
The discussion focuses on finding the infinite series sum $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$ using Euler's identity. By expressing cosine in terms of exponential functions, the series can be rewritten and simplified into two geometric series. The resulting expression is $$\frac{1}{2}\left(\frac{1}{1 - \frac{e^{ix}}{2}} + \frac{1}{1 - \frac{e^{-ix}}{2}}\right)$$. Participants note that while the suppression of imaginary terms in the final expression is tedious, it is manageable. The thread emphasizes the importance of careful manipulation of series and identities in deriving the solution.
jacobi1
Messages
47
Reaction score
0
Find $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$.
 
Mathematics news on Phys.org
jacobi said:
Find $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$.
[sp]
By considering the real part of $$\left(\frac{e^{ix}}{2}\right)^n$$ and summing a GP I get $$\frac{4-2\cos(x)}{5-4\cos(x)}$$...I think. :p
[/sp]
 
jacobi said:
Find $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$.

Applying the Euler's identity...

$\displaystyle \cos (n x) = \frac{e^{i n x} + e^{- i n x}}{2}\ (1)$

... You obtain...

$\displaystyle \sum_{n =0}^{\infty} \frac{\cos (n x)}{2^{n}} = \frac{1}{2}\ \sum_{n =0}^{\infty} (\frac{e^{i x}}{2})^{n} + \frac{1}{2}\ \sum_{n =0}^{\infty} (\frac{e^{- i x}}{2})^{n} =\frac{1}{2}\ \frac{1}{1 - \frac{e^{i x}}{2}} + \frac{1}{2}\ \frac{1} {1 - \frac{e^{- i x}}{2}}\ (2)$

The task of 'suppression' of the imaginary terms from the (2) is tedious but not very difficult and is left to You...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
20
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K