jacobi1
- 47
- 0
Find $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$.
The infinite series $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$ can be evaluated using Euler's identity. By expressing the cosine function in terms of exponential functions, the series simplifies to $$\frac{1}{2} \left( \frac{1}{1 - \frac{e^{ix}}{2}} + \frac{1}{1 - \frac{e^{-ix}}{2}} \right)$$. This results in the final expression $$\frac{4 - 2\cos(x)}{5 - 4\cos(x)}$$, confirming the convergence of the series for real values of x.
PREREQUISITESMathematicians, physics students, and anyone interested in series convergence, complex analysis, and the application of Euler's identity in solving infinite series problems.
[sp]jacobi said:Find $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$.
jacobi said:Find $$\sum_{n=0}^\infty \frac{\cos(nx)}{2^n}$$.