Sum of two trigonometric terms

Click For Summary

Discussion Overview

The discussion revolves around the mathematical problem of proving that $\tan \left( \dfrac{3 \pi}{11} \right)+ 4\sin \left( \dfrac{2 \pi}{11} \right)=\sqrt{11}$. Participants explore various methods and approaches to tackle this problem, which has been previously discussed in other forums.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • Some participants express eagerness to share and explore different methods to prove the equation, noting that it may be a well-known problem.
  • One participant mentions finding a relationship $\tan 3\theta=\dfrac{1}{t}$ and inquires about the value of $t$, indicating an interest in geometric interpretations.
  • Another participant suggests a heuristic approach, expressing confidence in its validity while inviting others to contribute further.
  • A participant mentions deriving a solution through a "twisted Gauss sum," questioning its relevance to the discussion.
  • Multiple participants reiterate the original problem statement, indicating a desire for collaborative exploration of solutions.
  • One participant acknowledges receiving two different methods from another participant, encouraging further contributions and solutions from others.

Areas of Agreement / Disagreement

There is no consensus on a single method or solution to the problem, and multiple competing approaches and interpretations are presented without resolution.

Contextual Notes

Participants reference various methods and diagrams, but the discussion lacks clarity on the assumptions or definitions used in their approaches. Some mathematical steps remain unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\tan \left( \dfrac{3 \pi}{11} \right)+ 4\sin \left( \dfrac{2 \pi}{11} \right)=\sqrt{11}$.

I know this problem may be stale as it has been posted countless times at other math forums, but I've seen one brilliant method to attack this problem recently, and I'm so eager to share it with the folks here at our site.

Despite my saying so, I would still welcome anyone who would want to take a stab at this challenge.
 
Mathematics news on Phys.org
anemone said:
Prove that $\tan \left( \dfrac{3 \pi}{11} \right)+ 4\sin \left( \dfrac{2 \pi}{11} \right)=\sqrt{11}$.

I know this problem may be stale as it has been posted countless times at other math forums, but I've seen one brilliant method to attack this problem recently, and I'm so eager to share it with the folks here at our site.

Despite my saying so, I would still welcome anyone who would want to take a stab at this challenge.
 

Attachments

  • sum of two trigonometric terms.jpg
    sum of two trigonometric terms.jpg
    26.2 KB · Views: 143
Last edited:
Albert said:

Hi Albert:), thanks for participating.

According to your diagram, I have found $\tan 3\theta=\dfrac{1}{t}$. And I am curious and wish to know if you have found the value of $t$ yet? I tried with no luck so far.
 
Since I see arguments with period division by 11, I am pretty sure they are roots of an (reducible, yes, I'd think) eleventh degree equation. Then I would have just factorized that thing out and end up with the correct quadratic

Just a heuristic. I am pretty sure it works, though. Perhaps someone can finish through this line?
 
anemone said:
Hi Albert:), thanks for participating.

According to your diagram, I have found $\tan 3\theta=\dfrac{1}{t}$. And I am curious and wish to know if you have found the value of $t$ yet? I tried with no luck so far.
$in \triangle BCD ,\,\, tan 3\theta =\dfrac {BD}{CD}=\dfrac {2t}{1-t^2+t^2} =2t$
 
Last edited:
Eh, I derived this one by some kind of twisted Gauss sum, but perhaps this ain't what you want..., is it?
 
anemone said:
Prove that $\tan \left( \dfrac{3 \pi}{11} \right)+ 4\sin \left( \dfrac{2 \pi}{11} \right)=\sqrt{11}$.

I know this problem may be stale as it has been posted countless times at other math forums, but I've seen one brilliant method to attack this problem recently, and I'm so eager to share it with the folks here at our site.

Despite my saying so, I would still welcome anyone who would want to take a stab at this challenge.
I use another method (this is easier ,but the calculation still very tedious)
let :$t=tan \,\,x ,\,\,(x=\dfrac {\pi}{11})$
then :$tan \,\, 3x=\dfrac{3t-t^3}{1-3t^2}----(a)$
$4sin \,\, 2x=4\times \dfrac{2t}{1+t^2}=\dfrac {8t}{1+t^2}----(b)$
$tan \,\, 2x=\dfrac{2t}{1-t^2}----(c)$
for :
$tan \,\, 5x +tan \,\, 6x=0$
$\dfrac {tan \,\, 3x+tan\,\, 2x}{1-tan\,\,3x\,tan\,2x}+\dfrac {2\times\, tan \,\, 3x}{1-tan^2 3x}=0---(d)$
put (a) and (c) to (d) we may solve for t (one of its solution will be t$\approx 0.2936)$
put t to (a) and (b) we may get the result:$(a)+(b)$and compare with $\sqrt {11}$
 
Last edited:
Thanks to you, Albert for providing me two different methods to tackle this particular problem.

@Balarka, you're free to use any method that you like to attack the problem and I am looking forward to read your solution post, as I am sure many will get benefited by looking at your solution, if there is any.

anemone said:
Prove that $\tan \left( \dfrac{3 \pi}{11} \right)+ 4\sin \left( \dfrac{2 \pi}{11} \right)=\sqrt{11}$.

I know this problem may be stale as it has been posted countless times at other math forums, but I've seen one brilliant method to attack this problem recently, and I'm so eager to share it with the folks here at our site.

Despite my saying so, I would still welcome anyone who would want to take a stab at this challenge.

According to the tangents of sums formulae, we have

$\tan 11x=\dfrac{11 \tan x-165\tan^3x+462\tan^5x-330\tan^7x+55\tan^2x-tan^{11}x}{1-55\tan^2x+330\tan^4x-462\tan^6x+165\tan^8x-11\tan^{10}x}$

For $x=\dfrac{\pi}{11}$, we have $11 \tan x-165\tan^3x+462\tan^5x-330\tan^7x+55\tan^2x-tan^{11}x=0$

Hence,

$\tan^{10}x=55\tan^8x-330\tan^6x+462\tan^4x-165\tan^2x+11$

Notice that

$\begin{align*}\sin 2x&=2\sin x\cos x\\&=\dfrac{2\sin x \cos x \cos x}{\cos x}\\&=2\tan x \cos^2 x\\&=2\tan x\dfrac{\cos^2 x}{1}\\&=2\tan x\dfrac{\cos^2 x}{\sin^2 x+\cos^2 x}\\&=2\tan x\dfrac{1}{\tan^2 x+1}\end{align*}$

hence we get

$\begin{align*}(\tan 3x+4\sin 2x)^2&=\left( \dfrac{3\tan x-\tan^3 x}{1-3\tan^2 x}+\dfrac{8\tan x}{1+\tan^2 x} \right)^2\\&=\dfrac{(11\tan x-22\tan^3 x-\tan^5 x)^2}{((1-3\tan^2 x)(\tan^2 x+1))^2}\\&=\dfrac{\tan^{10} x+44\tan^8 x+462\tan^6 x-484\tan^4 x+121\tan^2 x}{9\tan^8 x+12\tan^6 x-2\tan^4 x-4\tan^2 x+1}\\&=\dfrac{11(9\tan^8 x+12\tan^6 x-2\tan^4 x-4\tan^2 x+1)}{9\tan^8 x+12\tan^6 x-2\tan^4 x-4\tan^2 x+1}\\&=11\end{align*}$

Note that we replaced $\tan^{10}x$ by $55\tan^8x-330\tan^6x+462\tan^4x-165\tan^2x+11$ in the second last step above since we're dealing with $x=\dfrac{\pi}{11}$.

therefore we can conclude that
$\tan \left( \dfrac{3 \pi}{11} \right)+ 4\sin \left( \dfrac{2 \pi}{11} \right)=\sqrt{11}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
12K