Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Featured Insights Super p-Brane Theory Emerging from Super Homotopy Theory - Comments

  1. Jul 14, 2017 #1

    Urs Schreiber

    User Avatar
    Science Advisor
    Gold Member

  2. jcsd
  3. Jul 14, 2017 #2

    arivero

    User Avatar
    Gold Member

    Well, I like the bottleneck in D=9 in the last diagram.
     
  4. Jul 14, 2017 #3
    A great addition to a wonderful series!
     
  5. Jul 14, 2017 #4

    Urs Schreiber

    User Avatar
    Science Advisor
    Gold Member

    Sorry for having referred to the article for details towards the end. I now went and added a little more text to go with that last diagram. Because the reason for its hour glass look is not that there is a bottleneck in the extension process here, but because towards the right the diagram shows cocycles, and to the left it shows the homotopy fibers of these cocycles.

    Namely on the right is shown the double dimensional reduction of the F1/Dp-brane cocycles for d=10 type IIA and type IIB, respectively. The triangle on the right expresses that down in 9 these become equivalent. This is T-duality on the cocycle level. Specifically, it turns out that in components this equivalence is the Buscher rule for RR-fields (derived thereby, from first principles). Now by functoriality of homotopy fibers, also the extensions classified by these cocycles become equivalent, and this is expressed by the triangle on the left. These equivalent extensions thus classified turn out to be the doubled superspacetimes with their B-field generalized geometry, and their equivalence is hence T-duality made manifest as a symmetry of the doubled spacetime.
     
  6. Jul 17, 2017 #5

    bhobba

    Staff: Mentor

    Man that's beautiful stuff.

    Wish my math was up to the full details these days.

    It taps out at RHS's - that's about my limit.

    Love reading your articles though.

    Thanks
    Bil
     
  7. Jul 18, 2017 #6

    Urs Schreiber

    User Avatar
    Science Advisor
    Gold Member

    Thanks for the feedback.

    Let me amplify that while homotopy theory in general and rational homotopy theory (RHS) in particular provide the full story that I am sketching above, most of the results surveyed above may be seen already via elementary means by considering just "FDA"s as used in supergravity, augmented only by the standard algorithm for computing homotopy (co-)fibers. The lecture notes at ncatlab.org/nlab/print/geometry+of+physics+--+fundamental+super+p-branes are written for an audience with no particular background, are expository, detailed and self-contained. And for something half-way between the terse slides for the above and these full lecture notes, there is also these seminar notes: ncatlab.org/schreiber/print/Super+Lie+n-algebra+of+Super+p-branes.

    (Best viewed with Firefox or one of its derivatives, since other browsers will call MathJax to render the formulas, which then takes ages.)
     
  8. Mar 11, 2018 #7

    Urs Schreiber

    User Avatar
    Science Advisor
    Gold Member

    Maybe I may be excused for plugging a pointer related to the topic of this old PF Insights article, on matters of higher structures in physics:

    There'll be a conference later this year on this topic, titled

    String and M-Theory: The New Geometry of the 21st Century"
    NUS Singapore, 10-14 Dec 2018

    Sub-theme 1: The worldvolume theories of M-branes
    • Little string theory formulation of the M5-brane worldvolume theory.
    • Non-abelian gerbes and the higher gauge theory formulation of M5-brane worldvolume theory.
    • Three-Lie algebra/ABJM formulation of M2-brane worldvolume theory
    Sub-theme 2: The role of homotopy super Lie-n algebras in M-theory
    • Homotopy super Lie-n algebras and higher WZW models of branes.
    • Homotopy super Lie-n algebras and string dualities.
    Incidentally, we are finalizing some new results on this subject, the working title is Higher T-duality of super M-branes and this is what we think we claim:

    We establish a higher generalization of super L-∞-algebraic T-duality of super WZW-terms for super p-branes. In particular we demonstrate spherical T-duality of super M5-branes propagating on exceptional-geometric 11d superspacetimes. Finally we observe that this constitutes a duality-isomorphism relating a priori different moduli spaces for C-field configurations in exceptional generalized geometry.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted