MHB Surface Area of Revolution with Double Integration

Click For Summary
The discussion focuses on calculating the surface area of revolution for the function f(x) = sin(x) over the interval [-π, 5π/4]. The surface area formula is applied, resulting in an expression that combines integrals over two intervals, [0, π] and [0, π/4]. The integration process involves substituting variables and simplifying the integral of sec^3(t). The final result for the surface area is approximately 31.27. The author acknowledges previous mistakes and attributes them to distractions.
Edward2022
Messages
1
Reaction score
0

Attachments

  • ONE.jpg
    ONE.jpg
    7.3 KB · Views: 129
Last edited:
Physics news on Phys.org
ok ... one more time

$\displaystyle S = 2\pi \int_a^b f(x) \sqrt{1+[f(x)]^2} \, dx$

rotating $f(x) = \sin{x}$ over the interval $[-\pi, 5\pi/4]$ is equivalent to rotating twice over the interval $[0,\pi]$ plus once over the interval $[0, \pi/4]$

so ...

$\displaystyle S = 4\pi \int_0^\pi \sin{x} \sqrt{1+\cos^2{x}} \, dx + 2\pi \int_0^{\pi/4} \sin{x} \sqrt{1+\cos^2{x}} \, dx$

let $u = \cos{x} \implies du = -\sin{x} \, dx$

$\displaystyle S = 4\pi \int_{-1}^1 \sqrt{1+u^2} \, du + 2\pi \int_{1/\sqrt{2}}^1 \sqrt{1+u^2} \, du$

let $u = \tan{t} \implies du = \sec^2{t} \, dt$

$\displaystyle S = 4\pi \int_{-\pi/4}^{\pi/4} \sqrt{1+\tan^2{t}} \sec^2{t} \, dt + 2\pi \int_{\arctan(1/\sqrt{2})}^{\pi/4} \sqrt{1+\tan^2{t}} \sec^2{t} \, dt$

$\displaystyle S = 4\pi \int_{-\pi/4}^{\pi/4} \sec^3{t} \, dt + 2\pi \int_{\arctan(1/\sqrt{2})}^{\pi/4} \sec^3{t} \, dt$

since the secant function is even ...

$\displaystyle S = 8\pi \int_0^{\pi/4} \sec^3{t} \, dt + 2\pi \int_{\arctan(1/\sqrt{2})}^{\pi/4} \sec^3{t} \, dt$

note integrating $\sec^3{t}$ by parts ...

$\displaystyle \int \sec^3{t} \, dt = \dfrac{1}{2} \bigg[\sec{t}\tan{t} + \ln|\sec{t}+\tan{t}| \bigg]$

so ...

$S = 4\pi \bigg[ \sec{t}\tan{t} + \ln|\sec{t}+\tan{t}| \bigg]_0^{\pi/4} + \pi \bigg[ \sec{t}\tan{t} + \ln|\sec{t}+\tan{t}| \bigg]_{\arctan(1/\sqrt{2})}^{\pi/4}$

$S = 5\pi\bigg[\sqrt{2}+\ln(\sqrt{2}+1)\bigg] - \pi \bigg[\dfrac{\sqrt{3}}{2} + \ln\left(\dfrac{\sqrt{3}+1}{\sqrt{2}}\right) \bigg] \approx 31.27$

sorry for the previous deleted posts ... too many opportunities to make careless errors, especially after consuming a few beers.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K