- #1
- 337
- 158
Why direction of surface tension is tangential to the surface and not perpendicular downwards since it is caused by molecules in the bulk?
To answer your first question, it might be worthwhile to look at an analogous but simpler system=a rope that is wrapped around a cylinder. The tension ## T ## in the rope is along the tangential path, but it exerts a force on the cylinder that is perpendicular to the path, because of the curvature. The normal force on the cylinder per unit length is ## f_l=\frac{T}{r} ##, where ##r ## is the radius of the cylinder.
The surface tension will create pressure ##P ## inside a spherical droplet. The book "Equilibrium Thermodynamics" by Adkins pp. 39-40 treats this particular case very well. Defining the surface tension ## \gamma=\frac{dW}{dA} ##, we can write ## dW=\gamma \, dA =8 \pi \gamma r \, dr##. We also have ## dW=P \, dV=P \, 4 \pi r^2 \, dr ##. Equating these two expressions for ## dW ## gives ## P=\frac{2 \gamma}{r} ##. ## \\ ## This expression for pressure ## P ## is similar to the expression of the force per unit length in the rope, where, in both cases, the radius ## r ## appears in the denominator.
Sir but how can I understand thatPressure is a force per unit area that acts normal to a surface. The ## W ## above is work or energy. Surface tension ## \gamma ## is defined as the work required to increase the area of the surface by one unit, thereby ## \gamma=\frac{dW}{dA} ##.
Sir but from these equations how can I understand that surface tension is tangetial.Pressure is a force per unit area that acts normal to a surface. The ## W ## above is work or energy. Surface tension ## \gamma ## is defined as the work required to increase the area of the surface by one unit, thereby ## \gamma=\frac{dW}{dA} ##. ## \\ ## Meanwhile, the above area ## A=4 \pi r^2 ##, thereby ## dA=8 \pi r \, dr ##.