MHB Symmetric/Alternating k-linear functions, Wedge Product

joypav
Messages
149
Reaction score
0
I am working through Tu's "An Introduction to Manifolds" and am trying to get an understanding of things with some simple examples. The definitions usually seem simple and understandable, but I want to make sure I can use them for an actual function.

I've worked a few problems below that my professor suggested and just want to check that I am getting it right.

1.
If $f(x,y) = 2x + 3y$, find $Af$ and $Sf$, (the alternating and symmetric k-linear function).
I'm given,
$Sf = \sum_{\sigma \in S_k} \sigma f$
and
$Af = \sum_{\sigma \in S_k} (sgn \sigma) \sigma f$
Solution:
$Sf = \sum_{\sigma \in S_2} \sigma f = (2x+3y)+(2y+3x) = 5x + 5y$
Seems reasonable, as $\sigma f = f$ for any $\sigma$.
$Af = \sum_{\sigma \in S_2} (sgn \sigma) \sigma f = (1)(2x + 3y)+(-1)(2y+3x)=-x+y$
Also seems reasonable, as $\sigma f = (sgn \sigma)f$ for any $\sigma$.

2.
If $g(x,y)=x+y$, show $Ag=0$ and $Sg=g$.
Solution:
$Sg = \sum_{\sigma \in S_2} \sigma g = (x+y)+(y+x)=2x+2y$
Though I am supposed to show that $Sg=g$. Why does it? Of course $g$ is already symmetric, but doesn't the definition for $Sg$ give $2x+2y$? Which is also symmetric.
$Ag = \sum_{\sigma \in S_2} (sgn \sigma) \sigma g = (1)(x+y)+(-1)(y+x)=0$

3.
If $f(x,y)=2x+3y$ and $g(x,y)=4x+5y$, find $f \otimes g$ and $f \wedge g$.
I am given, (for f k-linear and g l-linear)
$( f \otimes g )(v_1, ..., v_{k+l})= f(v_1,..., v_k)\cdot g(v_{k+1},..., v_{k+l})$
and
$f \wedge g = \frac{1}{k!l!}A(f \otimes g)$
Solution:
$( f \otimes g )(x, y, a, b) = (2x+3y)(4a+5b)=8xa+10xb+12ya+15yb$

$f \wedge g = \frac{1}{2!2!}A(8xa+10xb+12ya+15yb)$
I am unsure about both of these. If that's right, then next I'd find the alternating 4-linear function that comes from $8xa+10xb+12ya+15yb$.
 
Physics news on Phys.org
Hi joypav,
joypav said:
1.
If $f(x,y) = 2x + 3y$, find $Af$ and $Sf$, (the alternating and symmetric k-linear function).
I'm given,
$Sf = \sum_{\sigma \in S_k} \sigma f$
and
$Af = \sum_{\sigma \in S_k} (sgn \sigma) \sigma f$
Solution:
$Sf = \sum_{\sigma \in S_2} \sigma f = (2x+3y)+(2y+3x) = 5x + 5y$
Seems reasonable, as $\sigma f = f$ for any $\sigma$.
$Af = \sum_{\sigma \in S_2} (sgn \sigma) \sigma f = (1)(2x + 3y)+(-1)(2y+3x)=-x+y$
Also seems reasonable, as $\sigma f = (sgn \sigma)f$ for any $\sigma$.

Your calculation for $Sf$ is correct. However, it is not true that $\sigma f= f$ for any $\sigma$; i.e., $f$ is not symmetric. Can you see why?

joypav said:
2.
If $g(x,y)=x+y$, show $Ag=0$ and $Sg=g$.
Solution:
$Sg = \sum_{\sigma \in S_2} \sigma g = (x+y)+(y+x)=2x+2y$
Though I am supposed to show that $Sg=g$. Why does it? Of course $g$ is already symmetric, but doesn't the definition for $Sg$ give $2x+2y$? Which is also symmetric.
$Ag = \sum_{\sigma \in S_2} (sgn \sigma) \sigma g = (1)(x+y)+(-1)(y+x)=0$

Your calculations are correct here. There must have been a typo in the problem statement given to you by your professor. As you noted, $g$ is symmetric, so $\sigma g=g$ for all $\sigma\in S_{2}$. Hence $Sg = 2g.$

joypav said:
3.
If $f(x,y)=2x+3y$ and $g(x,y)=4x+5y$, find $f \otimes g$ and $f \wedge g$.
I am given, (for f k-linear and g l-linear)
$( f \otimes g )(v_1, ..., v_{k+l})= f(v_1,..., v_k)\cdot g(v_{k+1},..., v_{k+l})$
and
$f \wedge g = \frac{1}{k!l!}A(f \otimes g)$
Solution:
$( f \otimes g )(x, y, a, b) = (2x+3y)(4a+5b)=8xa+10xb+12ya+15yb$

$f \wedge g = \frac{1}{2!2!}A(8xa+10xb+12ya+15yb)$
I am unsure about both of these. If that's right, then next I'd find the alternating 4-linear function that comes from $8xa+10xb+12ya+15yb$.

This looks good so far. As you said, calculating $f \wedge g = \frac{1}{2!2!}A(8xa+10xb+12ya+15yb)$ still remains.
 
Last edited:
GJA said:
Your calculation for $Sf$ is correct. However, it is not true that $\sigma f= f$ for any $\sigma$; i.e., $f$ is not symmetric. Can you see why?
Of course, yes. Mistake on my part.. I meant my calculation for $Sf$ made sense as $\sigma Sf = Sf, \forall \sigma$.
GJA said:
This looks good so far. As you said, calculating $f \wedge g = \frac{1}{2!2!}A(8xa+10xb+12ya+15yb)$ still remains.
Okay, great.
Is this calculation as long as it seems? Aren't there 24 possible $\sigma$'s?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
3
Replies
100
Views
11K
2
Replies
61
Views
11K
Back
Top